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Exercise (4.1.1).

Proof. We are given a finite group G, a subgroup H , a representation (U, τ) of G, and a representation (V, π) of H . First, I
claim that the map HomG(U, V

G) → HomH(UH , V ) given by:

Φ 7→ (u 7→ Φ(u)(e)

is a C-linear transformation, where e denotes the identity ofG. Linearity is clear, so we only need to show that the image of Φ
is an H-equivariant map. For h ∈ H and u ∈ U , we have:

Φ(τ(h)u)(e) = (πG(h)Φ(u))(e) = Φ(u)(eh) = Φ(u)(he) = π(h)Φ(u)(e)

as desired.
Conversely, we claim that the map HomH(UH , V ) → HomG(U, V

G) given by:

Ψ 7→ (u 7→ (g 7→ Ψ(τ(g)u)))

is also C-linear. Linearity is again clear, so we wish to show that the image ofΨ isG-equivariant and that this image evaluated
at u is an element of V G for each u. For both, it will be convenient for a fixed Ψ to define fu : G→ V by:

fu(g) = Ψ(τ(g)u)

for each u ∈ U . Then the map above can be defined by Ψ 7→ (u 7→ fu). To see that fu is in V G, note that for any h ∈ H and
g ∈ G,

fu(hg) = Ψ(τ(hg)u) = Ψ(τ(h)(τ(g)u)) = π(h)Ψ(τ(g)u) = π(h)fu(g)

as desired. Finally, we show that the overall map is G-equivariant; for g, g′ ∈ G and u ∈ U , we have:

fτ(g′)u(g) = Ψ(τ(g)(τ(g′)u)) = Ψ(τ(gg′)u) = fu(gg
′) = (πG(g′)fu)(g)

So that fτ(g′)u = πG(g′)fu as desired.
Finally, to complete the proof, we show these two morphisms are inverses. ForΦ ∈ HomG(U, V

G), letΨ be the image over
the first morphism and Φ′ be the image of Ψ across the second. Then, for u ∈ U and g ∈ G,

Φ′(u)(g) = Ψ(τ(g)u) = Φ(τ(g)u)(e) = (πG(g)Φ(u))(e) = Φ(u)(eg) = Φ(u)(g)

so that Φ′ = Φ. Conversely, for Ψ ∈ HomH(UH , V ), let Φ be the image over the second and Ψ′ be the image of Φ over the
first. Then, for u ∈ U ,

Ψ′(u) = Φ(u)(e) = Ψ(τ(e)u) = Ψ(u)

so Ψ′ = Ψ. Hence both compositions are the identity, and we have HomG(U, V
G) ∼= HomH(UH , V ) as C-vector spaces.

Now let (π1, V1) and (π2, V2) be representations of the same finite groupGwith charactersχ1, χ2. As per the hint, we know
that both ⟨χ1, χ2⟩G and dimHomG(π1, π2) are linear in each coordinate. Namely, if π1 is the direct sum of sub-representations,
then χ1 is the corresponding sum of characters, the inner product expands as a sum, the vector space of homs splits as a direct
sum since each map can be defined on each summand, and the dimension adds. Similarly, using the projections, both terms are
linear in π2. So, showing these quantities are equal reduces to the case when π1, π2 are irreducible.

Let S ∈ HomG(π1, π2). Then note that kerS is a π1-equivariant subspace of V1, and imS is a π2-equivariant subspace.
Indeed, for v ∈ kerS, w = Sz ∈ imS, and g ∈ G arbitrary:

Sπ1(g)v = π2(g)Sv = π2(g)0 = 0

π2(g)w = π2(g)Sz = Sπ1(g)z

so that πg(v) ∈ kerS and π2(g)w ∈ imS. By irreducibility, this shows that the kernel and image are trivial. If either kerS = V1
or imS = 0, then S = 0 is the zero map. Otherwise kerS = 0 and imS = V2 and S is an isomorphism. So each nonzero
element of HomG(π1, π2) is an isomorphism of representations.

We now have two cases. If π1 ̸∼= π2, then the above shows that HomG(π1, π2) = 0, which has dimension zero. But in
this case we also know ⟨χ1, χ2⟩ = 0, so the two quantities are equal as claimed. Otherwise π1 ∼= π2, and we can pick an
explicit isomorphim T . We know ⟨χ1, χ2⟩ = 1 in this case, so it suffices to show that HomG(π1, π2) = CT . To this end, let



S ∈ HomG(π1, π2). Either S = 0 = 0T ∈ CT , or S is an isomorphism. Then T−1S is a π1-equivariant automorphism of V1.
Let λ, v be an eigenvalue-eigenvector pair of T−1S. Then

span{π1(g)v | g ∈ G}

is a nonzero π1-invariant subspace of V1 (since it contains v), so it must be all of V1 by irreducibility. So, for w ∈ V1, we can
write:

w =
∑
i

ciπ1(gi)v

for some finite collection of ci ∈ C and gi ∈ G. Then,

T−1Sw = T−1S
∑
i

ciπ1(gi)v =
∑
i

ci(T
−1Sπ1(gi))v =

∑
i

ci(π1(g)T
−1S)v =

∑
i

ciπ1(gi)λv = λ
∑
i

ciπ1(gi)v = λw

So that T−1S = λI , i.e. S = λT ∈ CT , completing the proof.

Finally, the last statement combines these two trivially:〈
σ, χG

〉
= dimHomG(τ, π

G) = dimHomH(τH , π) = ⟨σH , χ⟩

as claimed.

Exercise (4.1.2).

Proof. We would like to show ∆(xi) is Si-equivariant for each i. For this, suppose g ∈ Si. Then,

∆(xi) ◦ π1,i(g) = π2(e) ◦∆(xi) ◦ π1(x−1
i gxi) = ∆(exix

−1
i gxi) = ∆(gxie) = π2(g) ◦∆(xi) ◦ π1(e) = π2,i(g) ◦∆(xi)

as desired.

This now suggests that we can define Φ : HomG(V
G
1 , V

G
2 ) →

⊕r
i=1 HomSi

(π1,i, π2,i) by:

Φ(∆) = (∆(x1), . . . ,∆(xr))

where we identify HomG(V
G
1 , V

G
2 ) with the vector space of functions ∆ satisfying equation (1.4). The above computation

shows that we have correctly stated the codomain. It is also clear that Φ is linear.
So, we now wish to show it is bijective. For injectivity, suppose ∆ ∈ kerΦ, whence ∆(xi) = 0 for all i. Now, let g ∈ G,

and note that g = h2xih1 for some h2 ∈ H2 and h1 ∈ H1 since we have chosen the xi to represent the double cosets. Then,

∆(g) = π2(h2) ◦∆(xi) ◦ π1(h1) = 0

and so we have that ∆ = 0 identically. For surjectivity, assume that {ϕi}ri=1 is a collection of intertwiners ϕi : π1,i → π2,i.
Define:

∆(h2xih1) = π2(h2) ◦ ϕi ◦ π1(h1)

for h1 ∈ H1 and h2 ∈ H2. First, we show this is well-defined. Suppose h2xih1 = h′2xjh
′
1. Then these lie in the same (H1, H2)

double coset, so i = j by assumption. Then, s := (h′2)
−1h2 = xih

′
1h

−1
1 x−1

i ∈ H2 ∩ xiH1x
−1
i = Si. So,

π2(h2) ◦ ϕi ◦ π1(h1) = π2(h
′
2) ◦ π2((h′2)−1) ◦ π2(h2) ◦ ϕi ◦ π1(h1)

= π2(h
′
2) ◦ π2(s) ◦ ϕi ◦ π1(h1)

= π2(h
′
2) ◦ π2,i(s) ◦ ϕi ◦ π1(h1)

= π2(h
′
2) ◦ ϕi ◦ π1,i(s) ◦ π1(h1)

= π2(h
′
2) ◦ ϕi ◦ π1(x−1

i sxih1)

= π2(h
′
2) ◦ ϕi ◦ π1(h′1)

as desired. Second, it is clear that ∆ equation (1.4), and so ∆ ∈ HomG(V
G
1 , V

G
2 ) with Φ(∆) = (ϕ1, . . . , ϕr). This shows

surjectivity and completes the proof.

Exercise (4.1.3).
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Proof. Let A ∈ GLn(F ), and consider tI − A, a matrix with entries in the PID F [t]. We know that this matrix has a unique
Smith normal form S, and that it is obtained via row and column operations. That is, there are matrices P andQ inGLn(F [t])
with P (tI −A)Q = S.

Now, tI −AT also has a unique Smith normal form. But note:

QT (tI −AT )PT = QT (tI −A)TPT = (P (tI −A)Q)T = ST = S

since tI and S are diagonal. Hence, the Smith normal form for tI −AT is also S, since QT and PT are invertible.
So, we conclude that tI −A and tI −B are equivalent matrices, whence A and B are similar.

Exercise (4.1.4).

Proof. This is very direct:

⟨x1, y⟩ ⟨x2, y⟩ = χ(x1yx
−1
1 y−1)χ(x2yx

−1
2 y−1)

= χ((x1yx
−1
1 y−1)(x2yx

−1
2 y−1))

= χ(x1(x2yx
−1
2 y−1)yx−1

1 y−1)

= χ(x1x2yx
−1
2 x−1

1 y−1)

= ⟨x1x2, y⟩

where we’ve used that the right commutator is in the center. The second follows from the first and the fourth, as:

⟨x, y1y2⟩ = ⟨y1y2, x⟩−1
= (⟨y1, x⟩ ⟨y2, x⟩)−1

= ⟨x, y1⟩ ⟨x, y2⟩

as desired. For the third,
⟨x, x⟩ = χ(xxx−1x−1) = χ(1) = 1

and for the fourth,
⟨y, x⟩−1

= χ(yxy−1x−1)−1 = χ(xyx−1y−1) = ⟨x, y⟩

completing the computation.

Exercise (4.1.5).

Proof. I drop the bars for convenience. Let A be a maximal isotropic subgroup of H/Z . To show that it is polarizing, suppose
that x ∈ H/Z is such that ⟨x, y⟩ = 1 for all y ∈ A. We seek to show x ∈ A. Consider the subgroup B = A ⟨x⟩ ⊆ H/Z . Since
A ⊆ B, it suffices to show that B is isotropic, for then B = A by maximality of A.

Note that any element of B is of the form axn for a ∈ A and n ∈ Z. Then,

⟨axn, bxm⟩ = ⟨a, b⟩ ⟨a, xm⟩ ⟨xn, b⟩ ⟨xn, xm⟩ = ⟨a, x⟩m ⟨x, b⟩n = (1−1)m(1)n = 1

and so B is indeed isotropic.

Exercise (4.1.6).

Proof. As suggested in the hint, let Z0 be the kernel of χ0. Then, if x, y ∈ A, we have

χ0(xyx
−1y−1) = ⟨x, y⟩ = 1

since A is isotropic. So, xyx−1y−1 ∈ Z0, so xZ0 and yZ0 commute in A/Z0. These are arbitrary, and so A/Z0 is abelian.
But then, χ0 factors through Z → Z/Z0, and so χ0 is a character of Z/Z0, whence it can be extended to the finite abelian

overgroup A/Z0. Abusing notation and referring to this map as χ0 as well, we finally get an extension to A by precomposing
with the quotient map A→ A/Z0 as desired.

Exercise (4.1.7).

Proof. We’ve already noted that A,B are normal subgroups since A,B are normal subgroups of H , since it is abelian. Then
clearly AB is normal as well.

Now, define χ : A ∩B → C by χ(s) = χB(s)χA(s
−1). This is a character, since

χ(st) = χB(st)χA((st)
−1) = χB(s)χB(t)χA(t

−1)χA(s
−1) = χ(s)χ(t)
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We use this to show uniqueness. Suppose x is such that χB(s) = χA(x
−1sx) for all s ∈ A ∩B. Then,

χ(s) = χB(s)χA(s
−1) = χA(x

−1sx)χA(s
−1) = χA(x

−1sxs−1) = χ0(x
−1sxs−1) =

〈
x−1, s

〉
So, x−1 is determined modulo (A ∩B)⊥ = A⊥B⊥ = AB since A,B are polarizing.

Finally, we show existence. FINISH

Exercise (4.1.8).

Proof.

Exercise (4.1.9).

Proof. Suppose we have a 2-cocycle σ : G × G → A and a 1-chain ϕ : G → A with coboundary δϕ. We wish to show
G̃σ

∼= G̃σ·δϕ. Define the map f : G̃σ → G̃σ·δϕ by:

f(g, a) = (g, aϕ(g)−1ϕ(1))

This is a group homomorphism since

f((g, a)(g′, a′)) = f(gg′, aa′σ(g, g′)σ(1, 1)−1)

= (gg′, aa′σ(g, g′)σ(1, 1)−1ϕ(gg′)−1ϕ(1))

= (g, aϕ(g)−1ϕ(1))(g′, a′ϕ(g′)−1ϕ(1))

= f(g, a)f(g′, a′)

If (g, a) is in the kernel of f , then since the first coordinate is preserved, we get g = 1, and then the second coordinate gives
1 = aϕ(1)−1ϕ(1) = a, so a = 1 as well. I.e. f injects. On the other hand, it also clearly surjects. Indeed, for g ∈ G and a ∈ A,
we have:

f(g, aϕ(g)ϕ(1)−1) = (g, aϕ(g)ϕ(1)−1ϕ(g)−1ϕ(1)) = (g, a)

So, we have furnished an isomorphism G̃σ → G̃σ·δϕ as desired.

Now, suppose 1 → A
i−→ G̃

q−→ G → 1 is a central extension of G by A. Since q surjects, we can choose a function (not a
group homomorphism) s : G→ G̃ with q(s(g)) = g; for convenience, choose s(1) = 1. Now, for g, g′ ∈ G, note that

q(s(gg′)−1s(g)s(g′)) = q(s(gg′))−1q(s(g))q(s(g′)) = (gg′)−1gg′ = 1

So, s(gg′)−1s(g)s(g′) is in the kernel of q, which equals the image of i. So, let σ(g, g′) be any element of A satisfying
i(σ(g, g′)) = s(gg′)−1s(g)s(g′); again, for convenience, since i(σ(1, 1)) = s(1)−1s(1)s(1) = s(1) = 1, we may choose
σ(1, 1) = 1. For this map σ : G×G→ A, we construct a group homomorphism f : G̃σ → G̃ by:

f(g, a) = s(g)i(a)

This is indeed a group homomorphism since:

f((g, a)(g′, a′)) = f(gg′, aa′σ(g, g′)σ(1, 1)−1)

= s(gg′)i(aa′σ(g, g′))

= s(gg′)i(σ(g, g′))i(a)i(a′)

= s(g)i(a)s(g′)i(a′)

= f(g, a)f(g′, a′)

where we have used liberally the fact that the image of i lies in the center of G̃. This gives the diagram:

1 A G̃σ G 1

1 A G̃ G 1

idA f idG

i q

4



We wish to show that this diagram commutes and that f is an isomorphism. For a ∈ A, we have f(1, a) = s(1)i(a) = i(a) =
i(idA(a)), giving commutativity of the first square. For (g, a) ∈ G̃σ , we have q(f(g, a)) = q(s(g)i(a)) = q(s(g))q(i(a)) =
g · 1 = g, giving commutativity of the second square. But now f is an isomorphism by the five lemma.

Finally, we wish to show uniqueness: if G̃σ is equivalent to G̃τ , then σ = τ · δϕ for some 1-chain ϕ. Suppose that
f : G̃σ → G̃τ is an isomorphism fitting into a commutative diagram as above. Then f(g, a) = (g, π(g, a)) for some function
π : G×A→ A by commutativity of the second square, and π(1, a) = a by commutativity of the first. Then, for g, g′ ∈ G:

(gg′, π(gg′, 1)σ(g, g′)σ(1, 1)−1) = (gg′, π(gg′, 1))(1, σ(g, g′)σ(1, 1)−1)

= f(gg′, 1)f(1, σ(g, g′)σ(1, 1)−1)

= f((gg′, 1)(1, σ(g, g′)σ(1, 1)−1))

= f(gg′, σ(g, g′)σ(1, 1)−1)

= f((g, 1)(g′, 1))

= f(g, 1)f(g′, 1)

= (g, π(g, 1))(g′, π(g′, 1))

= (gg′, π(g, 1)π(g′, 1)τ(g, g′)τ(1, 1)−1)

So, for ϕ(g) = π(g, 1)σ(1, 1)τ(1, 1)−1:

σ(g, g′) = τ(g, g′)π(g, 1)π(g′, 1)π(gg′, 1)−1σ(1, 1)τ(1, 1)−1 = τ(g, g′)ϕ(g)ϕ(g′)ϕ(gg′)−1 = τ(g, g′)·δϕ(g, g′) = (τ ·δϕ)(g, g′)

completing the proof.

Exercise (4.1.10).

Proof. We’ve chosen ω(g) to be an intertwiner between the H-reps (π,W ) and (πg,W ). So, for h ∈ H , we have ω(g)π(h) =
πg(h)ω(g) = π(gh)ω(g) i.e. π(gh) = ω(g)π(h)ω(g)−1.

From this, we can see that ω is a homomorphism, for if g, g′ ∈ G, then

ω(g)ω(g′)π(h)ω(g′)−1ω(g)−1 = ω(g)π(g
′
h)ω(g)−1 = π(g(g

′
h)) = π(gg

′
h) = ω(gg′)π(h)ω(gg′)−1

So, ω(gg′)−1ω(g)ω(g′) is an intertwiner from π to itself, and by Schur, this means thatω(g)ω(g′) andω(gg′) differ by a constant
multiple. In other words, ω(g)ω(g′) = ω(gg′) in PGL(W ).

Exercise (4.1.11).

Proof. Let α = (x, y, z) ∈ H be in the kernel of the pairing induced by χ0. To show that χ0 is generic, we wish to show that
α ∈ Z , i.e. x = y = 0. Note that α−1 = (−x,−y,−z). Consider first β = (0, ax, 0) for a ∈ F . Then, β−1 = (0,−ax, 0) and

1 = ⟨α, β⟩ = χ0(αβα
−1β−1) = χ0((x, ax+ y, z +B(x, ax))(−x,−ax− y,−z +B(−x,−ax))) = ψ(2aB(x, x))

If x ̸= 0, then B(x, x) is nonzero by nondegeneracy of the form, but then 2aB(x, x) varies over all elements of F as a varies.
This would then imply that ψ is the trivial character, which we have assumed not to be true. Hence x = 0, i.e. α = (0, y, z).
Similarly, now consider β = (ay, 0, 0) so β−1 = (−ay, 0, 0) and compute:

1 = ⟨α, β⟩ = χ0((ay, y, z −B(ay, y))(−ay,−y,−z −B(−ay,−y))) = ψ(−2aB(y, y))

which implies that y = 0 by the same argument. So, α ∈ Z as desired.

Now, let’s show that A is polarizing. First, note that

(x, 0, z), (x′, 0, z′) = (x+ x′, 0, z + z′) = (x′, z′)(x, z)

so that A is abelian. But then half of the claim is obvious: for α, β ∈ A, we have ⟨α, β⟩ = χ0(αβα
−1β−1) = χ0(0, 0, 0) = 1.

Conversely, suppose that α = (x, y, z) ∈ A⊥. We wish to show that y = 0. Note that for β = (ay, 0, 0),

1 = ⟨α, β⟩ = ψ(−2aB(y, y))

so that 2aB(y, y) = 0 for all a ∈ F , and as before, this gives B(y, y) = 0 and so y = 0 as desired.

Exercise (4.1.12).
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Proof.

Exercise (4.1.13).

Proof.

Exercise (4.1.14).

Proof.

Exercise (4.1.15).

Proof.

Exercise (4.1.16).

Proof.

Exercise (4.1.17).

Proof.

Exercise (4.1.18).

Proof.

Exercise (4.1.19).

Proof.

Exercise (4.1.20).

Proof.
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