Exercise (4.1.1).

Proof. We are given a finite group G, a subgroup H, a representation (U, τ) of G, and a representation (V, π) of H. First, I claim that the map $\operatorname{Hom}_G(U, V^G) \to \operatorname{Hom}_H(U_H, V)$ given by:

Name: Abhay Goel Date: May 16, 2024

$$\Phi \mapsto (u \mapsto \Phi(u)(e)$$

is a \mathbb{C} -linear transformation, where e denotes the identity of G. Linearity is clear, so we only need to show that the image of Φ is an H-equivariant map. For $h \in H$ and $u \in U$, we have:

$$\Phi(\tau(h)u)(e) = (\pi^G(h)\Phi(u))(e) = \Phi(u)(eh) = \Phi(u)(he) = \pi(h)\Phi(u)(e)$$

as desired.

Conversely, we claim that the map $\operatorname{Hom}_H(U_H,V) \to \operatorname{Hom}_G(U,V^G)$ given by:

$$\Psi \mapsto (u \mapsto (g \mapsto \Psi(\tau(g)u)))$$

is also \mathbb{C} -linear. Linearity is again clear, so we wish to show that the image of Ψ is G-equivariant and that this image evaluated at u is an element of V^G for each u. For both, it will be convenient for a fixed Ψ to define $f_u: G \to V$ by:

$$f_u(g) = \Psi(\tau(g)u)$$

for each $u \in U$. Then the map above can be defined by $\Psi \mapsto (u \mapsto f_u)$. To see that f_u is in V^G , note that for any $h \in H$ and $g \in G$,

$$f_u(hg) = \Psi(\tau(hg)u) = \Psi(\tau(h)(\tau(g)u)) = \pi(h)\Psi(\tau(g)u) = \pi(h)f_u(g)$$

as desired. Finally, we show that the overall map is G-equivariant; for $g, g' \in G$ and $u \in U$, we have:

$$f_{\tau(g')u}(g) = \Psi(\tau(g)(\tau(g')u)) = \Psi(\tau(gg')u) = f_u(gg') = (\pi^G(g')f_u)(g)$$

So that $f_{\tau(g')u} = \pi^G(g')f_u$ as desired.

Finally, to complete the proof, we show these two morphisms are inverses. For $\Phi \in \operatorname{Hom}_G(U, V^G)$, let Ψ be the image over the first morphism and Φ' be the image of Ψ across the second. Then, for $u \in U$ and $g \in G$,

$$\Phi'(u)(g) = \Psi(\tau(g)u) = \Phi(\tau(g)u)(e) = (\pi^{G}(g)\Phi(u))(e) = \Phi(u)(eg) = \Phi(u)(g)$$

so that $\Phi' = \Phi$. Conversely, for $\Psi \in \operatorname{Hom}_H(U_H, V)$, let Φ be the image over the second and Ψ' be the image of Φ over the first. Then, for $u \in U$,

$$\Psi'(u) = \Phi(u)(e) = \Psi(\tau(e)u) = \Psi(u)$$

so $\Psi' = \Psi$. Hence both compositions are the identity, and we have $\operatorname{Hom}_G(U, V^G) \cong \operatorname{Hom}_H(U_H, V)$ as \mathbb{C} -vector spaces.

Now let (π_1, V_1) and (π_2, V_2) be representations of the same finite group G with characters χ_1, χ_2 . As per the hint, we know that both $\langle \chi_1, \chi_2 \rangle_G$ and dim $\operatorname{Hom}_G(\pi_1, \pi_2)$ are linear in each coordinate. Namely, if π_1 is the direct sum of sub-representations, then χ_1 is the corresponding sum of characters, the inner product expands as a sum, the vector space of homs splits as a direct sum since each map can be defined on each summand, and the dimension adds. Similarly, using the projections, both terms are linear in π_2 . So, showing these quantities are equal reduces to the case when π_1, π_2 are irreducible.

Let $S \in \operatorname{Hom}_G(\pi_1, \pi_2)$. Then note that $\ker S$ is a π_1 -equivariant subspace of V_1 , and $\operatorname{im} S$ is a π_2 -equivariant subspace. Indeed, for $v \in \ker S$, $w = Sz \in \operatorname{im} S$, and $g \in G$ arbitrary:

$$S\pi_1(g)v = \pi_2(g)Sv = \pi_2(g)0 = 0$$

 $\pi_2(g)w = \pi_2(g)Sz = S\pi_1(g)z$

so that $\pi_g(v) \in \ker S$ and $\pi_2(g)w \in \operatorname{im} S$. By irreducibility, this shows that the kernel and image are trivial. If either $\ker S = V_1$ or $\operatorname{im} S = 0$, then S = 0 is the zero map. Otherwise $\ker S = 0$ and $\operatorname{im} S = V_2$ and S is an isomorphism. So each nonzero element of $\operatorname{Hom}_G(\pi_1, \pi_2)$ is an isomorphism of representations.

We now have two cases. If $\pi_1 \not\cong \pi_2$, then the above shows that $\operatorname{Hom}_G(\pi_1, \pi_2) = 0$, which has dimension zero. But in this case we also know $\langle \chi_1, \chi_2 \rangle = 0$, so the two quantities are equal as claimed. Otherwise $\pi_1 \cong \pi_2$, and we can pick an explicit isomorphim T. We know $\langle \chi_1, \chi_2 \rangle = 1$ in this case, so it suffices to show that $\operatorname{Hom}_G(\pi_1, \pi_2) = \mathbb{C}T$. To this end, let

 $S \in \operatorname{Hom}_G(\pi_1, \pi_2)$. Either S = 0 = 0 $T \in \mathbb{C}T$, or S is an isomorphism. Then $T^{-1}S$ is a π_1 -equivariant automorphism of V_1 . Let λ, v be an eigenvalue-eigenvector pair of $T^{-1}S$. Then

$$\operatorname{span}\{\pi_1(g)v \mid g \in G\}$$

is a nonzero π_1 -invariant subspace of V_1 (since it contains v), so it must be all of V_1 by irreducibility. So, for $w \in V_1$, we can write:

$$w = \sum_{i} c_i \pi_1(g_i) v$$

for some finite collection of $c_i \in \mathbb{C}$ and $g_i \in G$. Then,

$$T^{-1}Sw = T^{-1}S\sum_{i}c_{i}\pi_{1}(g_{i})v = \sum_{i}c_{i}(T^{-1}S\pi_{1}(g_{i}))v = \sum_{i}c_{i}(\pi_{1}(g)T^{-1}S)v = \sum_{i}c_{i}\pi_{1}(g_{i})\lambda v = \lambda\sum_{i}c_{i}\pi_{1}(g_{i})v = \lambda w$$

So that $T^{-1}S = \lambda I$, i.e. $S = \lambda T \in \mathbb{C}T$, completing the proof.

Finally, the last statement combines these two trivially:

$$\langle \sigma, \chi^G \rangle = \dim \operatorname{Hom}_G(\tau, \pi^G) = \dim \operatorname{Hom}_H(\tau_H, \pi) = \langle \sigma_H, \chi \rangle$$

as claimed.

Exercise (4.1.2).

Proof. We would like to show $\Delta(x_i)$ is S_i -equivariant for each i. For this, suppose $g \in S_i$. Then,

$$\Delta(x_i) \circ \pi_{1,i}(g) = \pi_2(e) \circ \Delta(x_i) \circ \pi_1(x_i^{-1}gx_i) = \Delta(ex_ix_i^{-1}gx_i) = \Delta(gx_ie) = \pi_2(g) \circ \Delta(x_i) \circ \pi_1(e) = \pi_{2,i}(g) \circ \Delta(x_i) \circ \pi_1(e) \circ \Delta(x_i) \circ \pi_1(e) \circ \Delta(x_i) \circ \pi_1(e) \circ \Delta(x_i) \circ \pi_1(e) \circ \Delta(x_i) \circ$$

as desired.

This now suggests that we can define $\Phi: \operatorname{Hom}_G(V_1^G, V_2^G) \to \bigoplus_{i=1}^r \operatorname{Hom}_{S_i}(\pi_{1,i}, \pi_{2,i})$ by:

$$\Phi(\Delta) = (\Delta(x_1), \dots, \Delta(x_r))$$

where we identify $\operatorname{Hom}_G(V_1^G, V_2^G)$ with the vector space of functions Δ satisfying equation (1.4). The above computation shows that we have correctly stated the codomain. It is also clear that Φ is linear.

So, we now wish to show it is bijective. For injectivity, suppose $\Delta \in \ker \Phi$, whence $\Delta(x_i) = 0$ for all i. Now, let $g \in G$, and note that $g = h_2 x_i h_1$ for some $h_2 \in H_2$ and $h_1 \in H_1$ since we have chosen the x_i to represent the double cosets. Then,

$$\Delta(g) = \pi_2(h_2) \circ \Delta(x_i) \circ \pi_1(h_1) = 0$$

and so we have that $\Delta=0$ identically. For surjectivity, assume that $\{\phi_i\}_{i=1}^r$ is a collection of intertwiners $\phi_i:\pi_{1,i}\to\pi_{2,i}$. Define:

$$\Delta(h_2x_ih_1) = \pi_2(h_2) \circ \phi_i \circ \pi_1(h_1)$$

for $h_1 \in H_1$ and $h_2 \in H_2$. First, we show this is well-defined. Suppose $h_2x_ih_1 = h_2'x_jh_1'$. Then these lie in the same (H_1, H_2) double coset, so i=j by assumption. Then, $s:=(h_2')^{-1}h_2=x_ih_1'h_1^{-1}x_i^{-1}\in H_2\cap x_iH_1x_i^{-1}=S_i$. So,

$$\pi_{2}(h_{2}) \circ \phi_{i} \circ \pi_{1}(h_{1}) = \pi_{2}(h'_{2}) \circ \pi_{2}((h'_{2})^{-1}) \circ \pi_{2}(h_{2}) \circ \phi_{i} \circ \pi_{1}(h_{1})$$

$$= \pi_{2}(h'_{2}) \circ \pi_{2}(s) \circ \phi_{i} \circ \pi_{1}(h_{1})$$

$$= \pi_{2}(h'_{2}) \circ \pi_{2,i}(s) \circ \phi_{i} \circ \pi_{1}(h_{1})$$

$$= \pi_{2}(h'_{2}) \circ \phi_{i} \circ \pi_{1,i}(s) \circ \pi_{1}(h_{1})$$

$$= \pi_{2}(h'_{2}) \circ \phi_{i} \circ \pi_{1}(x_{i}^{-1}sx_{i}h_{1})$$

$$= \pi_{2}(h'_{2}) \circ \phi_{i} \circ \pi_{1}(h'_{1})$$

as desired. Second, it is clear that Δ equation (1.4), and so $\Delta \in \operatorname{Hom}_G(V_1^G, V_2^G)$ with $\Phi(\Delta) = (\phi_1, \dots, \phi_r)$. This shows surjectivity and completes the proof.

Exercise (4.1.3).

Proof. Let $A \in GL_n(F)$, and consider tI - A, a matrix with entries in the PID F[t]. We know that this matrix has a unique Smith normal form S, and that it is obtained via row and column operations. That is, there are matrices P and Q in $GL_n(F[t])$ with P(tI - A)Q = S.

Now, $tI - A^{T}$ also has a unique Smith normal form. But note:

$$Q^{T}(tI - A^{T})P^{T} = Q^{T}(tI - A)^{T}P^{T} = (P(tI - A)Q)^{T} = S^{T} = S^{T}$$

since tI and S are diagonal. Hence, the Smith normal form for $tI - A^T$ is also S, since Q^T and P^T are invertible. So, we conclude that tI - A and tI - B are equivalent matrices, whence A and B are similar.

Exercise (4.1.4).

Proof. This is very direct:

$$\begin{split} \langle \overline{x_1}, \overline{y} \rangle \, \langle \overline{x_2}, \overline{y} \rangle &= \chi(x_1 y x_1^{-1} y^{-1}) \chi(x_2 y x_2^{-1} y^{-1}) \\ &= \chi((x_1 y x_1^{-1} y^{-1}) (x_2 y x_2^{-1} y^{-1})) \\ &= \chi(x_1 (x_2 y x_2^{-1} y^{-1}) y x_1^{-1} y^{-1}) \\ &= \chi(x_1 x_2 y x_2^{-1} x_1^{-1} y^{-1}) \\ &= \langle \overline{x_1 x_2}, \overline{y} \rangle \end{split}$$

where we've used that the right commutator is in the center. The second follows from the first and the fourth, as:

$$\langle \overline{x}, \overline{y_1 y_2} \rangle = \langle \overline{y_1 y_2}, \overline{x} \rangle^{-1} = (\langle \overline{y_1}, \overline{x} \rangle \langle \overline{y_2}, \overline{x} \rangle)^{-1} = \langle \overline{x}, \overline{y_1} \rangle \langle \overline{x}, \overline{y_2} \rangle$$

as desired. For the third,

$$\langle \overline{x}, \overline{x} \rangle = \chi(xxx^{-1}x^{-1}) = \chi(1) = 1$$

and for the fourth.

$$\langle \overline{y}, \overline{x} \rangle^{-1} = \chi (yxy^{-1}x^{-1})^{-1} = \chi (xyx^{-1}y^{-1}) = \langle \overline{x}, \overline{y} \rangle$$

completing the computation.

Exercise (4.1.5).

Proof. I drop the bars for convenience. Let A be a maximal isotropic subgroup of H/Z. To show that it is polarizing, suppose that $x \in H/Z$ is such that $\langle x, y \rangle = 1$ for all $y \in A$. We seek to show $x \in A$. Consider the subgroup $B = A \langle x \rangle \subseteq H/Z$. Since $A \subseteq B$, it suffices to show that B is isotropic, for then B = A by maximality of A.

Note that any element of B is of the form ax^n for $a \in A$ and $n \in \mathbb{Z}$. Then,

$$\langle ax^n, bx^m \rangle = \langle a, b \rangle \langle a, x^m \rangle \langle x^n, b \rangle \langle x^n, x^m \rangle = \langle a, x \rangle^m \langle x, b \rangle^n = (1^{-1})^m (1)^n = 1$$

and so B is indeed isotropic.

Exercise (4.1.6).

Proof. As suggested in the hint, let Z_0 be the kernel of χ_0 . Then, if $x, y \in A$, we have

$$\chi_0(xyx^{-1}y^{-1}) = \langle \overline{x}, \overline{y} \rangle = 1$$

since A is isotropic. So, $xyx^{-1}y^{-1} \in Z_0$, so xZ_0 and yZ_0 commute in A/Z_0 . These are arbitrary, and so A/Z_0 is abelian.

But then, χ_0 factors through $Z \to Z/Z_0$, and so χ_0 is a character of Z/Z_0 , whence it can be extended to the finite abelian overgroup A/Z_0 . Abusing notation and referring to this map as χ_0 as well, we finally get an extension to A by precomposing with the quotient map $A \to A/Z_0$ as desired.

Exercise (4.1.7).

Proof. We've already noted that A,B are normal subgroups since $\overline{A},\overline{B}$ are normal subgroups of \overline{H} , since it is abelian. Then clearly AB is normal as well.

Now, define $\chi: A \cap B \to \mathbb{C}$ by $\chi(s) = \chi_B(s)\chi_A(s^{-1})$. This is a character, since

$$\chi(st) = \chi_B(st)\chi_A((st)^{-1}) = \chi_B(s)\chi_B(t)\chi_A(t^{-1})\chi_A(s^{-1}) = \chi(s)\chi(t)$$

We use this to show uniqueness. Suppose x is such that $\chi_B(s) = \chi_A(x^{-1}sx)$ for all $s \in A \cap B$. Then,

$$\chi(s) = \chi_B(s)\chi_A(s^{-1}) = \chi_A(x^{-1}sx)\chi_A(s^{-1}) = \chi_A(x^{-1}sxs^{-1}) = \chi_0(x^{-1}sxs^{-1}) = \langle x^{-1}, s \rangle$$

So, x^{-1} is determined modulo $(A \cap B)^{\perp} = A^{\perp}B^{\perp} = AB$ since A, B are polarizing. Finally, we show existence. FINISH

Exercise (4.1.8).

Proof.

Exercise (4.1.9).

Proof. Suppose we have a 2-cocycle $\sigma: G \times G \to A$ and a 1-chain $\phi: G \to A$ with coboundary $\delta \phi$. We wish to show $\tilde{G}_{\sigma} \cong \tilde{G}_{\sigma \cdot \delta \phi}$. Define the map $f: \tilde{G}_{\sigma} \to \tilde{G}_{\sigma \cdot \delta \phi}$ by:

$$f(g,a) = (g, a\phi(g)^{-1}\phi(1))$$

This is a group homomorphism since

$$\begin{split} f((g,a)(g',a')) &= f(gg',aa'\sigma(g,g')\sigma(1,1)^{-1}) \\ &= (gg',aa'\sigma(g,g')\sigma(1,1)^{-1}\phi(gg')^{-1}\phi(1)) \\ &= (g,a\phi(g)^{-1}\phi(1))(g',a'\phi(g')^{-1}\phi(1)) \\ &= f(g,a)f(g',a') \end{split}$$

If (g, a) is in the kernel of f, then since the first coordinate is preserved, we get g = 1, and then the second coordinate gives $1 = a\phi(1)^{-1}\phi(1) = a$, so a = 1 as well. I.e. f injects. On the other hand, it also clearly surjects. Indeed, for $g \in G$ and $a \in A$, we have:

$$f(g, a\phi(g)\phi(1)^{-1}) = (g, a\phi(g)\phi(1)^{-1}\phi(g)^{-1}\phi(1)) = (g, a)$$

So, we have furnished an isomorphism $\tilde{G}_{\sigma} \to \tilde{G}_{\sigma \cdot \delta \phi}$ as desired.

Now, suppose $1 \to A \xrightarrow{i} \tilde{G} \xrightarrow{q} G \to 1$ is a central extension of G by A. Since q surjects, we can choose a function (not a group homomorphism) $s: G \to \tilde{G}$ with q(s(g)) = g; for convenience, choose s(1) = 1. Now, for $g, g' \in G$, note that

$$q(s(gg')^{-1}s(g)s(g')) = q(s(gg'))^{-1}q(s(g))q(s(g')) = (gg')^{-1}gg' = 1$$

So, $s(gg')^{-1}s(g)s(g')$ is in the kernel of q, which equals the image of i. So, let $\sigma(g,g')$ be any element of A satisfying $i(\sigma(g,g'))=s(gg')^{-1}s(g)s(g')$; again, for convenience, since $i(\sigma(1,1))=s(1)^{-1}s(1)s(1)=s(1)=1$, we may choose $\sigma(1,1)=1$. For this map $\sigma:G\times G\to A$, we construct a group homomorphism $f:\tilde{G}_\sigma\to\tilde{G}$ by:

$$f(q, a) = s(q)i(a)$$

This is indeed a group homomorphism since:

$$\begin{split} f((g,a)(g',a')) &= f(gg',aa'\sigma(g,g')\sigma(1,1)^{-1}) \\ &= s(gg')i(aa'\sigma(g,g')) \\ &= s(gg')i(\sigma(g,g'))i(a)i(a') \\ &= s(g)i(a)s(g')i(a') \\ &= f(g,a)f(g',a') \end{split}$$

where we have used liberally the fact that the image of i lies in the center of \tilde{G} . This gives the diagram:

$$1 \longrightarrow A \longrightarrow \tilde{G}_{\sigma} \longrightarrow G \longrightarrow 1$$

$$\downarrow_{\mathrm{id}_{A}} \qquad \downarrow_{f} \qquad \downarrow_{\mathrm{id}_{G}}$$

$$1 \longrightarrow A \stackrel{i}{\longrightarrow} \tilde{G} \stackrel{q}{\longrightarrow} G \longrightarrow 1$$

We wish to show that this diagram commutes and that f is an isomorphism. For $a \in A$, we have $f(1,a) = s(1)i(a) = i(id_A(a))$, giving commutativity of the first square. For $(g,a) \in \tilde{G}_{\sigma}$, we have $q(f(g,a)) = q(s(g)i(a)) = q(s(g))q(i(a)) = g \cdot 1 = g$, giving commutativity of the second square. But now f is an isomorphism by the five lemma.

Finally, we wish to show uniqueness: if \tilde{G}_{σ} is equivalent to \tilde{G}_{τ} , then $\sigma = \tau \cdot \delta \phi$ for some 1-chain ϕ . Suppose that $f: \tilde{G}_{\sigma} \to \tilde{G}_{\tau}$ is an isomorphism fitting into a commutative diagram as above. Then $f(g,a) = (g,\pi(g,a))$ for some function $\pi: G \times A \to A$ by commutativity of the second square, and $\pi(1,a) = a$ by commutativity of the first. Then, for $g,g' \in G$:

$$\begin{split} (gg',\pi(gg',1)\sigma(g,g')\sigma(1,1)^{-1}) &= (gg',\pi(gg',1))(1,\sigma(g,g')\sigma(1,1)^{-1}) \\ &= f(gg',1)f(1,\sigma(g,g')\sigma(1,1)^{-1}) \\ &= f((gg',1)(1,\sigma(g,g')\sigma(1,1)^{-1})) \\ &= f(gg',\sigma(g,g')\sigma(1,1)^{-1}) \\ &= f((g,1)(g',1)) \\ &= f(g,1)f(g',1) \\ &= (g,\pi(g,1))(g',\pi(g',1)) \\ &= (gg',\pi(g,1)\pi(g',1)\tau(g,g')\tau(1,1)^{-1}) \end{split}$$

So, for $\phi(g) = \pi(g, 1)\sigma(1, 1)\tau(1, 1)^{-1}$:

$$\sigma(g,g') = \tau(g,g')\pi(g,1)\pi(g',1)\pi(gg',1)^{-1}\sigma(1,1)\tau(1,1)^{-1} = \tau(g,g')\phi(g)\phi(g')\phi(gg')^{-1} = \tau(g,g')\cdot\delta\phi(g,g') = (\tau\cdot\delta\phi)(g,g')$$

completing the proof. \Box

Exercise (4.1.10).

Proof. We've chosen $\omega(g)$ to be an intertwiner between the H-reps (π, W) and (π_g, W) . So, for $h \in H$, we have $\omega(g)\pi(h) = \pi_g(h)\omega(g) = \pi(gh)\omega(g)$ i.e. $\pi(gh) = \omega(g)\pi(h)\omega(g)^{-1}$.

From this, we can see that ω is a homomorphism, for if $g, g' \in G$, then

$$\omega(g)\omega(g')\pi(h)\omega(g')^{-1}\omega(g)^{-1} = \omega(g)\pi(^{g'}h)\omega(g)^{-1} = \pi(^{g}(^{g'}h)) = \pi(^{gg'}h) = \omega(gg')\pi(h)\omega(gg')^{-1}$$

So, $\omega(gg')^{-1}\omega(g)\omega(g')$ is an intertwiner from π to itself, and by Schur, this means that $\omega(g)\omega(g')$ and $\omega(gg')$ differ by a constant multiple. In other words, $\omega(g)\omega(g')=\omega(gg')$ in PGL(W).

Exercise (4.1.11).

Proof. Let $\alpha=(x,y,z)\in H$ be in the kernel of the pairing induced by χ_0 . To show that χ_0 is generic, we wish to show that $\alpha\in Z$, i.e. x=y=0. Note that $\alpha^{-1}=(-x,-y,-z)$. Consider first $\beta=(0,ax,0)$ for $a\in F$. Then, $\beta^{-1}=(0,-ax,0)$ and

$$1 = \langle \alpha, \beta \rangle = \chi_0(\alpha \beta \alpha^{-1} \beta^{-1}) = \chi_0((x, ax + y, z + B(x, ax))(-x, -ax - y, -z + B(-x, -ax))) = \psi(2aB(x, x))$$

If $x \neq 0$, then B(x,x) is nonzero by nondegeneracy of the form, but then 2aB(x,x) varies over all elements of F as a varies. This would then imply that ψ is the trivial character, which we have assumed not to be true. Hence x=0, i.e. $\alpha=(0,y,z)$. Similarly, now consider $\beta=(ay,0,0)$ so $\beta^{-1}=(-ay,0,0)$ and compute:

$$1 = \langle \alpha, \beta \rangle = \chi_0((ay, y, z - B(ay, y))(-ay, -y, -z - B(-ay, -y))) = \psi(-2aB(y, y))$$

which implies that y=0 by the same argument. So, $\alpha \in Z$ as desired.

Now, let's show that A is polarizing. First, note that

$$(x,0,z),(x',0,z')=(x+x',0,z+z')=(x',z')(x,z)$$

so that A is abelian. But then half of the claim is obvious: for $\alpha, \beta \in A$, we have $\langle \alpha, \beta \rangle = \chi_0(\alpha\beta\alpha^{-1}\beta^{-1}) = \chi_0(0,0,0) = 1$. Conversely, suppose that $\alpha = (x,y,z) \in A^{\perp}$. We wish to show that y = 0. Note that for $\beta = (ay,0,0)$,

$$1 = \langle \alpha, \beta \rangle = \psi(-2aB(y, y))$$

so that 2aB(y,y)=0 for all $a\in F$, and as before, this gives B(y,y)=0 and so y=0 as desired.

Exercise (4.1.12).

Proof.	
Exercise (4.1.13).	
Proof.	
Exercise (4.1.14).	
Proof.	
Exercise (4.1.15).	
Proof.	
Exercise (4.1.16).	
Proof.	
Exercise (4.1.17).	
Proof.	
Exercise (4.1.18).	
Proof.	
Exercise (4.1.19).	
Proof.	
Exercise (4.1.20).	
Proof.	