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Exercise (1.1).

Proof. Directly, we have:
N(αβ) = (αβ)(αβ) = αβαβ = (αα)(ββ) = N(α)N(β)

So, if α | γ in Z[i], then there is β ∈ Z[i] with γ = αβ and then N(γ) = N(α)N(β). Each of these norms is in Z, so we have
N(α) | N(γ).

Exercise (1.2).

Proof. By the previous problem, if α ∈ Z[i] is a unit, then α | 1 and so N(α) divides N(1) = 12 + 02 = 1. But N(α) is a
nonnegative integer, so we must have N(α) = 1. Conversely, if α ∈ Z[i] has N(α) = 1, then αα = 1, and α ∈ Z[i] as well,
so α is a unit (with inverse α).

Hence, to categorize units, we need to solve a2 + b2 = 1 for a, b ∈ Z. The only solutions are (a, b) = (±1, 0) and
(a, b) = (0,±1), corresponding to α = a+ bi ∈ {1,−1, i,−i}.

Exercise (1.3).

Proof. Suppose α ∈ Z[i] has N(α) prime, and write α = βγ. Then N(β)N(γ) = N(α) is prime, so WLOG N(β) = 1. Hence
β is a unit and since this factorization was arbitrary, α is irreducible.

Similarly, if N(α) = p2 for a prime p with p ≡ 3 (mod 4), then for α = βγ, we get that N(β)N(γ) = p2. If either of
these factors is 1, then we are done as above, and otherwise we have N(β) = N(γ) = p. But if β = a + bi, then this gives
p = a2 + b2, which is a contradiction, since a2, b2 ∈ {0, 1} modulo 4.

Exercise (1.4).

Proof. Since
N(1− i) = 12 + (−1)2 = 2

is prime, the previous problem shows that 1− i is irreducible. Directly, we have the second claim since:

i(1− i)2 = i(−2i) = 2

and i is a unit.

Exercise (1.5).

Proof. This is consistent with unique factorization since the factors are unit multiples of one another. Namely:

−i(2 + i) = 1− 2i and i(2− i) = 1 + 2i

Exercise (1.6).

Proof. Suppose the claim is not true. Then, choose α ∈ Z[i] such that α is a nonzero, nonunit Gaussian integer such that α is
not a product of irreducibles, with N(α) as small as possible (by well-ordering of the nonnegative integers). We cannot have
N(α) = 0 or N(α) = 1, since it would be zero or a unit in these cases, respectively. Further, α is not itself irreducible, else it
would be a single product. So, there are nonunits β, γ with α = βγ. Then N(α) = N(β)N(γ), and so N(β), N(γ) < N(α),
since neither factor is equal to 1. By minimality, we can write β, γ as the product of irreducibles, but then α is the product of
all of these irreducibles together.

Exercise (1.7).



Proof. Let I ⊆ Z[i] be an ideal. If I = (0), then it is clearly principal. Otherwise, I has nonzero elements, and so we can choose
α ∈ I with α ̸= 0 and N(α) minimized. I claim I = (α).

So, let β ∈ I . We have that β/α ∈ Q[i], so we can write β/α = x+ yi for x, y ∈ Q. Then, we can choose integers a, b with
|a− x|, |b− y| ≤ 1

2 by rounding. Then, write γ = β − α(a+ bi) and δ = (x− a) + (y − b)i. Note that γ ∈ I since α, β ∈ I
and a+ bi ∈ Z[i]. Also note that

δδ = (x− a)2 + (y − b)2 ≤ 1

4
+

1

4
=

1

2

Further, we can compute the norm directly:

N(γ) = γγ

= (β − α(a+ bi))(β − α(a− bi))

= αα(x+ yi− a− bi)(x− yi− a+ bi)

= N(α)δδ

< N(α)

So, by minimality ofN(α) among nonzero elements of I , we must haveN(γ) = 0, and so γ = 0. I.e. β = α(a+ bi) ∈ (α).

Exercise (1.8).

Proof. As noted, (Z/pZ)∗ is cyclic of order p− 1, so there is some g ∈ Z/pZ that generates the group. If p ≡ 1 (mod 4), then
p− 1 is divisible by 4, and so r = (p− 1)/4 is an integer. But then (gr)2 ≡ −1 (mod 4). Indeed, g4r = gp−1 = 1, so g2r is a
root of x2 − 1, i.e. g2r is one of±1 since these are the only roots in the field Fp. But we cannot have g2r = 1, since g has order
4r.

Now, we have that p divides n2 + 1 = (n+ i)(n− i) for n = gr . But p does not divide either of n+ i or n− i in Z[i] since
the imaginary component is not divisible by p. So p is not prime in Z[i] and so is not irreducible since Z[i] is a UFD and thus
all irreducibles are prime.

So, we have that p is reducible, i.e. there are nonunits α, β ∈ Z[i] with p = αβ. Taking norms, we have p2 = N(α)N(β).
Since they are nonunits, we must have N(α) = N(β) = p. Hence, for α = a+ bi, we have p = N(α) = a2 + b2 is the sum of
two squares.

Exercise (1.9).

Proof. Note that if α ∈ Z[i] is such that N(α) = p is prime or N(α) = p2 for a prime p ≡ 3 (mod 4), then α is irreducible by
problem 3 above. I claim this is a complete list.

Indeed, suppose α is irreducible. Then αα = N(α) is its unique factorization. So, if we factorize N(α) over Z, then first
we note that no prime can occur with an exponent of 3 or higher, else N(α) would have at least three irreducible factors.

Further, it cannot have distinct factors p, q. For then, counting the irreducible factors gives that these would have to them-
selves be irreducible. So, up to unit multiples, we have p = α and q = alpha. Taking norms gives p2 = N(α) = N(α) = q2.

The only remaining case is that N(α) = p for some prime, or that N(α) = p2. These are precisely the cases above, unless
N(α) = 22 or N(α) = p2 for p ≡ 1 (mod 4). But we’ve already seen in these cases that p factors as the product of (at least)
two irreducible factors, whence p2 = N(α) has at least four irreducible factors, again contradicting unique factorization.

Exercise (1.10).

Proof. Note that
ω = e−2πi/3 = e4πi/3 = ω2

and that
1 + ω + ω2 =

ω3 − 1

ω − 1
= 0

So, for a, b ∈ R, we have:

(a+ bω)(a+ bω) = (a+ bω)(a+ bω2) = a2 + ab(ω + ω2) + b2ω3 = a2 − ab+ b2

So, for a, b ∈ Z, we have N(a+ bω) = |a+ bω|2.

Exercise (1.11).
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Proof. Exactly as before: for α, β ∈ Z[ω], we have

N(αβ) = (αβ)(αβ) = αβαβ = (αα)(ββ) = N(α)N(β)

So, if α | γ in Z[ω], then there is β ∈ Z[ω] with γ = αβ and thenN(γ) = N(α)N(β). Each of these norms is in Z, so we have
N(α) | N(γ).

Exercise (1.12).

Proof. Again, exactly as before: if N(α) = 1, then αα = 1, so α is a unit, and if α is a unit, then αβ = 1, so N(α) = 1 since it
is a positive integer divisor of 1.

So, to find units, we solve for a2 − ab+ b2 = 1. Multiplying by 4 gives

4 = 4a2 − 4ab+ 4b2 = (2a− b)2 + 3b2

So, |b| < 2, else (2a− b)2 + 3b2 ≥ 0 + 12. If b = ±1, then we have (2a− b)2 = 1, and so 2a = b± 1. This gives the solutions
(a, b) = (1, 1), (0, 1), (0,−1), (−1,−1). Otherwise b = 0 and then we have a2 = 1, so a = ±1, i.e. we have the solutions
(1, 0), (−1, 0). Since 1 + ω = −ω2, this gives the full list of units:

±1,±ω,±ω2

Exercise (1.13).

Proof. As before, we have:
N(1− ω) = 1 + 1 + 1 = 3

which is prime. So, 1− ω is irreducible. Similarly, directly, we get:

−ω2(1− ω)2 = −ω2(1− 2ω + ω2) = 3

Exercise (1.14).

Proof. Let I ⊆ Z[ω] be an ideal. If I = (0), then I is principal. Otherwise, choose an element α ∈ I with α ̸= 0 and N(α)
minimized. Again, I claim I = (α). So, let β ∈ I .

Again, we can take quotients to get β/α ∈ Q[ω], so β/α = x+yω for x, y ∈ Q. Choose a, b by rounding so |x−a|, |y−b| ≤
1
2 . Then, let γ = β − α(a+ bω) and δ = (x− a) + (y − b)ω. Then,

|δ|2 = (x− a)2 − (x− a)(y − b) + (y − b)2 ≤ 1

4
+

1

4
+

1

4
< 1

So, the rest of the proof goes exactly as before: γ ∈ I and

N(γ) = N(α)|δ|2 < N(α)

and so by minimality γ = 0. Hence β ∈ (α) as claimed.

Exercise (1.15).

Proof. Note that (n, x,m) is a primitive Pythagorean triple. Indeed, if p divides all of these, then it also divides y2 = 2mn and
w = m2 + n2, but (x2, y2, w) is primitive. Since x is assumed odd, we thus conclude

x = r2 − s2 n = 2rs m = r2 + s2

for r, s coprime and not both odd.
For the second claim, note that if p divides any two of r, s,m, then it divides the third since m = r2 + s2. But r, s are

coprime, so this cannot be. Hence, as noted, since y2 = 2mn = 2m(2rs) = 4mrs, we get that m, r, s are all perfect squares
by unique factorization (each prime must occur to an even power since it does in the LHS).

Hence, for r = a2, s = b2,m = c2, we get c2 = m = r2 + s2 = a4 + b4. But c ≤ c2 = m ≤ m2 < m2 + n2 = w, so this
contradicts the minimality of w.

Exercise (1.16).
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Proof. The roots of xp − 1 are 1, ω, . . . , ωp−1, and so

xp − 1 =

p−1∏
i=0

(x− ωi)

Dividing through x− 1 gives:

1 + x+ · · ·+ xp−1 =

p−1∏
i=1

(x− ωi)

Evaluating at x = 1 gives:

p =

p−1∏
i=1

(1− ωi)

as claimed.

Exercise (1.17).

Proof. Suppose that π also divides x + yωi for some i = 2, . . . , p. Then π divides the difference: (x + yωi) − (x + yω) =
yω(ωi−1 − 1). Multiplying through by the remaining factors of the form ωj − 1 and by ωp−1 gives that π divides yp. On the
other hand, π divides zp and so π divides z since it’s prime. Since p does not divide z, we have that z and yp are coprime, so
we cannot have a common divisor π.

Exercise (1.18).

Proof. Let P be the set of prime divisors of x+ yω. Then, each π ∈ P also divides zp and so z. Thus, the unique factorization
of z gives an integer n with πn | z and πn+1 ∤ z. Since π does not divide any of the other terms in the product, we have
that πnp divides x + yω but no higher power. Hence, each prime divisor of x + yω has an exponent which is a multiple of p.
I.e. x + yω = uαp, where α is the product of πn over all π ∈ P (and corresponding exponents n), and u is the unit in the
factorization.

Exercise (1.19).

Proof. The proof works the same way: if π is a prime ideal factor of both (x+yω) and (x+yωi) for some i ̸= 1, then π contains
both z and yp, and hence 1 since they are coprime. I.e. π is not proper, so certainly not prime.

Exercise (1.20).

Proof. This proof also works the same way. Writing P as the set of prime ideal factors of (x+ yω), each π contains z, and the
factorization of (z) includes πn as a multiplicand for some n. Then (x+ yω) = Ip where I is the product of πn over all π.

Exercise (1.21).

Proof. Note that f(t)(t − 1) = tp − 1. Then f(ω)(ω − 1) = ωp − 1 = 0, so f(ω) = 0, since ω ̸= 1. So, ω has degree at most
p− 1, and to see that it has degree p− 1 exactly, we check that f is irreducible.

But
f(t+ 1)t = (t+ 1)p − 1 = tp +

(
p

1

)
tp−1 + · · ·+

(
p

p− 1

)
t+ 1− 1

So, subtracting and dividing by t gives:

f(t+ 1) = tp−1 +

(
p

1

)
tp−2 + · · ·+

(
p

p− 1

)
By Eisenstein’s criterion, this is irreducible as long as p divides

(
p
k

)
for k = 1, . . . , p− 1 and p2 ∤

(
p

p−1

)
. The first is clear, since(

p
k

)
= p!

k!(p−k)! and p divides the numerator but not the denominator. The second is also clear, since
(

p
p−1

)
= p.

Exercise (1.22).
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Proof. Suppose that p divides α. Then,

α/p = a0/p+ a1/pω + · · ·+ ap−2/pω
p−2

On the other hand, α/p ∈ Z[ω], and so we can write:

α/p = b0 + b1ω + · · ·+ bp−2ω
p−2

for integers bi (note that we can only use terms up to ωp−2 since higher terms can be reduced using f from the previous
problem). But the uniqueness we proved above gives bi = ai/p, i.e. ai = pbi is a multiple of p.

Exercise (1.23).

Proof. If β ≡ γ (mod p), then β − γ = δp for some δ ∈ Z[ω]. Then, taking conjugates gives:

β − γ = δp

Since δ is a Z-linear combination of powers of ω, and ω = ωp−1 is also in Z[ω], we get that δ ∈ Z[ω]. So, β ≡ γ (mod p).

Exercise (1.24).

Proof. Note that:

(β + γ)p − (βp + γp) =

(
p

1

)
βγp−1 + · · ·+

(
p

p− 1

)
βp−1γ

and the right hand side is divisible by p since each binomial coefficient is. By induction, we have(
n∑

i=1

βi

)p

≡
n∑

i=1

βp
i

since the above gives the case n = 2 and each additional term also follows from the above case.

Exercise (1.25).

Proof. As suggested, write α = a0 + · · ·+ ap−2ω
p−2. Then, we have:

αp =

(
p−2∑
i=0

aiω
i

)p

≡
p−2∑
i=0

(aiω
i)p =

p−2∑
i=0

api

since ωp = 1. The right hand side is an integer, so this completes the argument.

Exercise (1.26).

Proof. Suppose x+ yω ≡ uαp (mod p) for x, y ∈ Z, a unit u, and some α ∈ Z[ω]. Then, we’ve shown that αp ≡ a (mod p)
for some a ∈ Z, i.e. x+ yω ≡ ua (mod p). Then, we’ve also shown that

x+ yω−1 = x+ yω ≡ ua = uω−ka (mod p)

for some k, where we’ve used u/u = ωk by Kummer’s result on units. Multiplying through by ωk gives:

(x+ yω−1)ωk ≡ ua ≡ x+ yω (mod p)

as claimed.

Exercise (1.27).

Proof. We may assume, without loss of generality, that 0 ≤ k < p. If k = 0, then we get that p divides y − yω2, but problem
22 implies that p | y, contrary to assumption. If 2 ≤ k ≤ p− 2, we get that p divides

x+ yω − xωk − yωk−1

and again, problem 22 implies that p divides each coefficient, including, say, x. Finally, if k = p− 1, we have that p divides

x+ yω − xωp−1 − yωp−2

and so it also divides (multiplying by ω2):
xω2 + yω3 − xω − y

and so it divides y. The only remaining possibility is that k = 1, as claimed.
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Exercise (1.28).

Proof. Finally, we have:
x+ yω ≡ xω + y (mod p)

and so p divides (x− y) + (y − x)ω. Hence, by problem 22, we get that p divides x− y, i.e. x ≡ y (mod p).

Exercise (1.29).

Proof. We compute blindly:

(1 + ω2 + ω4 + ω5 + ω6 + ω10 + ω11)(1 + ω + ω5 + ω6 + ω7 + ω9 + ω11)

= 1 + ω + ω2 + ω3 + ω4 + 3ω5 + 3ω6 + 3ω7 + ω8 + 3ω9 + 3ω10 + 7ω11

+ 3ω12 + 3ω13 + ω14 + 3ω15 + 3ω16 + 3ω17 + ω18 + ω19 + ω20 + ω21 + ω22

= 2ω5 + 2ω6 + 2ω7 + 2ω9 + 2ω10 + 6ω11 + 2ω12 + 2ω13 + 2ω15 + 2ω16 + 2ω17

which is divisible by 2 in Z[ω]. On the other hand, 1, ω, . . . , ω21 is a basis for Q(ω) over Q, so each factor is not divisible by 2
since the coefficients aren’t.

Exercise (1.30).

Proof. Suppose that A,B are ideals of R in the same ideal class, so there are nonzero elements a, b ∈ R with aA = bB.
Note that the map A → aA given by x 7→ ax is an R-module isomorphism. Indeed, it is a group homomorphism since
a(x + y) = ax + ay, and it is compatible with multiplication in R: a(rx) = r(ax). Finally, it is surjective essentially by
definition and injective since R is a domain and a is nonzero. The same proof shows that B ∼= bB. But bB = aA, and so we
have A ∼= B.

On the other hand, suppose that f : A → B is anR-module isomorphism of ideals A,B ofR. If A = 0, then clearlyB = 0
as well, and so A = B are obviously in the same ideal class. Otherwise, choose a nonzero element x ∈ A, and let y = f(x). I
claim yA = xB.

First, let xb ∈ xB. Then, since f is an isomorphism, there is a ∈ A with f(a) = b. Then xb = xf(a) = f(xa) = af(x) =
ay ∈ yA. So, xB ⊆ yA. The same argument using f−1 shows yA ⊆ xB. This completes the proof.

Exercise (1.31).

Proof. Note that this is false unless we assume α ̸= 0. With this assumption, now assume that αA = βR. Then in particular,
there is a ∈ A with αa = β. I claim A = aR. One containment is obvious, and for the other, suppose x ∈ A. Then αx ∈ βR
so there is r ∈ R with αx = βr = αar. Since α is nonzero and R is a domain, we get x = ar ∈ aR as claimed.

So, indeed, the principal ideals form an ideal class. For any two principal ideals are clearly in the same class, and the previous
argument shows that if A is in the same class as a principal ideal, then it is itself principal.

Exercise (1.32).

Proof. Suppose that multiplication of ideal classes forms a group. Since R · R = R, we have that principal ideals must be the
identity element of this group. Hence, if A is any ideal, then the ideal class of A has an inverse, i.e. another class such that the
product of the representatives gives a representative of the identity. I.e. we get an ideal B such that AB is principal as desired.

Conversely, suppose that every ideal has an inverse in this sense. Then multiplication of ideal classes is associative and the
principal ideals act as identity clearly, and the inverse condition is satisfied by our assumption.
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