
Marcus Number Fields Solutions Name: Abhay Goel
Chapter 2 Date: August 4, 2024

Exercise (2.1).

Proof. SupposeK is a degree two extension ofQ. Then, pick any x ∈ K \Q. We have thatQ ⊆ Q(x) ⊆ K , but [Q(x) : Q] ̸= 1,
so Q(x) = K . So, K is obtained by adding a root of a (monic) degree two polynomial to Q. If this polynomial is t2 + ax+ b,
then completing the square gives the polynomial

(t− a/2)2 + b− a2/4

and soK = Q(
√

b− a2/4). Clearing denominators, we have thatK = Q(
√
m), where b− a2/4 = m/n2 for some n ∈ Z.

Now, suppose m,n ∈ Z are squarefree (and not equal to 1). If Q(
√
m) = Q(

√
n), then there are a, b ∈ Q with

√
n =

a+ b
√
m. Squaring gives

n = a2 +mb2 + 2ab
√
m

By unique representations inQ(
√
m), we must therefore have n = a2+mb2 and 2ab = 0. If b = 0, then this is a contradiction,

since we get n = a2, but n is squarefree. So, b ̸= 0, and so a = 0, which gives n = mb2. Since n is squarefree, we must thus
have b = ±1, and so n = m. In other words, the fields Q(

√
n) are distinct for n squarefree.

Exercise (2.2).

Proof. Let R = Z[
√
−3]. It is clear that I ̸= 2R, since 1 +

√
3 ∈ I , but 1+

√
−3

2 /∈ R. On the other hand, we have:

I2 = (2, 1 +
√
−3)2 = (4, 2 + 2

√
−3,−2 + 2

√
−3) = (4, 2 + 2

√
−3) = 2(2, 1 +

√
−3) = 2I

as claimed. Thus, ideals in R don’t factorize uniquely into primes, since the ideal I2 would have the two distinct factoriza-
tions coming from doubling the exponents on the prime factors of I and the factorization coming from concatenating the
factorizations of I and 2R.

For the rest of the statement, we first show that I is prime. Indeed,

R/I = Z[
√
−3]/(2, 1 +

√
−3) = Z[x]/(2, 1 + x, x2 + 3) = F2[x]/(x+ 1, x2 + 3) = F2

is a domain. In fact it is a field, so I is maximal.
Second, suppose that P is a prime ideal containing 2R. Then it necessarily contained 2, and also,

(1 +
√
−3)2 = −2 + 2

√
−3 ∈ 2R

hence 1 +
√
−3 ∈ P since P is prime. So, P contains I , but since I is maximal we get P = I .

Third, note that a product of ideals is necessarily contained in each of the multiplicands. So, if 2R has a factorization, each
factor must contain 2R, and so a factorization into primes must be of the form 2R = Ik since this is the only prime containing
2R as we’ve just shown. We also know k ≥ 2 since 2R ̸= R and we’ve shown 2R ̸= I . But then we have:

I3 ⊆ I2 = 2I = Ik+1 ⊆ I3

and so all of these ideals are equal, which we need to show cannot be. But,

I3 = (I2)I = (2I)I = 4I

and so in particular 4 ∈ 2I = I2, but 4 /∈ 4I = I3. Hence I3 ̸= I2.

Exercise (2.3).

Proof. To finish the proof, we need to show that for r, s ∈ Q and m squarefree such that 2r and r2 − ms2 are integers, if
m ≡ 2, 3 (mod 4):

r, s ∈ Z
and otherwise for m ≡ 1 (mod 4):

2r, 2s ∈ Z and 2r ≡ 2s (mod 2)

Since 2r ∈ Z, we consider the two cases of it being even and odd. If 2r is even, then r ∈ Z. Then ms2 ∈ Z as well, and since
m is squarefree, this gives that s2 ∈ Z, and hence s ∈ Z. This can happen in either case form above.

Otherwise 2r is odd. Then 4ms2 = (2r)2 − 4(r2 −ms2) is an integer. As before, sincem is squarefree, we conclude 4s2 is
an integer, and so 2s ∈ Z as well. Furthermore, the expression above is the difference of an odd square and a multiple of four,
so we get m(2s)2 ≡ 1 (mod 4). Hence we get that 2s is odd andm ≡ 1 (mod 4). This falls under the second case.



Exercise (2.4).

Proof. The proof of theorem 2 shows a more general fact: if A ⊆ B are rings, then an element α ∈ B is integral over A (in
that it satisfies a monic polynomial with coefficients in A) iff A[α] is a finite A-module iff α ∈ C for some A-subalgebra C of
B that is a finite A-module. So, since a0, . . . , an−1 are algebraic integers, we have that each of the extensions:

Z ⊆ Z[a0] ⊆ Z[a0, a1] ⊆ · · · ⊆ Z[a0, . . . , an−1]

are finite extensions of modules. Further, since α is integral over this final extension, we also have that Z[a0, . . . , an−1] ⊆
Z[a0, . . . , an−1, α] is a finite extension. Hence, by our tower laws, Z ⊆ Z[a0, . . . , an−1, α] is a finite extension of modules.
This is a Z-subalgebra of, say, C that contains α, and so α is integral over Z, i.e. it is an algebraic integer.

Exercise (2.5).

Proof. Note that for a ∈ Fp, ap = a, and for any two elements α, β in a ring of characteristic p, (α + β)p = αp + βp. By
induction, this latter fact extends to arbitrary finite sums. Hence, if f ∈ Fp[x], then,

(f(x))p =

(
n∑

i=0

aix
i

)p

=

n∑
i=0

(aix
i)p =

n∑
i=0

ai(x
p)i = f(xp)

as claimed.

Exercise (2.6).

Proof. Since f2 | g, we have g = f2h for some h ∈ K[x]. Then, differentiating gives

g′ = 2ff ′h+ f2h′ = f(2f ′h+ fh′)

which is clearly divisible by f .

Exercise (2.7).

Proof. For k ∈ (Z/mZ)×, we have an automorphism of Q[ω] that maps ω to ωk . If we have two such automorphisms, corre-
sponding to k and ℓ, then under the composition:

ω 7→ ωk 7→ (ωℓ)k = ωkl

where the exponent can, of course, be considered modulo m. Hence composition of automorphisms corresponds to multipli-
cation in (Z/mZ)×.

Exercise (2.8).

(a) Let ω = e2πi/p, p an odd prime. Show that Q[ω] contains
√
p if p ≡ 1 (mod 4), and

√
−p if p ≡ −1 (mod 4). Express√

−3 and
√
5 as polynomials in the appropriate ω.

(b) Show that the 8th cyclotomic field contains
√
2.

(c) Show that every quadratic field is contained in a cyclotomic field.

Proof.

(a) First, here’s a very unmotivated explicit solution (skip below the line for the “better” proof). Let χ(n) denote the Legendre
symbol, so that χ depends only on the residue mod p, χ(0) = 0 and otherwise χ(n) = 1 if and only if n is a perfect
square mod p. For t ∈ {1, . . . , p − 1}, let t−1 denote the unique integer in {1, . . . , p − 1} such that tt−1 is 1 modulo p.
Define

ar =

p−1∑
n=1

χ(n(r − n))

Note that:

a0 =

p−1∑
n=1

χ(−n2) = χ(−1)(p− 1)
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and for 1 ≤ r ≤ p− 1,

ar =

p−1∑
n=1

χ((r−1)2)χ(n(r − n)) =

p−1∑
n=1

χ(r−1n(1− r−1n)) =

p−1∑
k=1

χ(k(1− k)) = a1

since multiplication by r−1 simply permutes {1, . . . , p− 1}. Finally, define

f(x) =

p−1∑
n=0

χ(n)xn

If γ satisfies γp = 1, then

(f(γ))2 =

(
p−1∑
n=0

χ(n)γn

)2

=

p−1∑
n=0

p−1∑
m=0

χ(n)χ(m)γn+m

=

p−1∑
r=0

p−1∑
m=0

χ(m(r −m))γr for r ≡ n+m

=

p−1∑
r=0

arγ
r

= χ(−1)(p− 1) + a1

p−1∑
r=1

γr

On one hand, since 1p = 1, we can take γ = 1. But f(1) = 0 since there are exactly (p− 1)/2 residues and nonresidues
modulo p. So, this gives

χ(−1)(p− 1) + (p− 1)a1 = 0 =⇒ a1 = −χ(−1)

On the other hand, we can take γ = ω which gives:

f(ω)2 = χ(−1)(p− 1) + a1

p−1∑
r=1

ωr = χ(−1)(p− 1) + χ(−1) = χ(−1)p

which is what we wished to show, since now f(ω) is in Q(ω) and has square ±p.

“Better” proof: We’ve shown that disc(ω) = pp−2 if p ≡ 1 (mod 4) and disc(ω) = −pp−2 otherwise. But we can write
disc(ω) = |σi(ω

j)|2, where | · | denotes the determinant, and i, j range over the appropriate indices. Thus, ±pp−2 is a
square of an element inQ[ω], and since p is odd, so is pp−3. Hence, the quotient is a square inQ[ω], namely

√
±p ∈ Q[ω].

Now, we consider the explicit cases. Note that the “worse” proof actually helps here, since it was very explicit. For p = 3,
the proof showed that √

−3 = ω − ω2 = ω − ω−1

which is also clear since ω±1 = − 1
2 ± i

√
3
2 . For p = 5, the proof showed:

√
5 = ω − ω2 − ω3 + ω4

To confirm this, we can square the expression:

(ω − ω2 − ω3 + ω4)2 = ω2 − 2ω3 − ω4 + 4ω5 − ω6 − 2ω7 + ω8 = 4− ω − ω2 − ω3 − ω4 = 5

as claimed.

(b) Let ω = e2πi/8. Then, ω2 = i, so:

(ω + ω−1)2 = ω2 + 2 + ω−2 = i+ 2− i = 2

i.e.
√
2 = ±(ω + ω−1) ∈ Q[ω].
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(c) Let m be squarefree. Then we can write m as a product of primes ±p1 · · · pk . Consider the field K = Q(ω), where
ω = e2πi/(8m). Then, ωm =

√
i, so K contains the 8th cyclotomic field, and so contains

√
2. Similarly, ω2m = i, and

so K contains
√
−1. Finally, for each odd prime divisor pj , ω4m/pj = e2πi/pj , so K contains √±pj for each j. Hence,

multiplying the necessary terms, we have that K contains
√
m.

Exercise (2.9).

Proof. Let ζj = e2πi/j . As suggested, suppose ω = ζm and that θ is a primitive kth root of unity, so that θ = e2πih/k = ζhk for
some h with (h, k) = 1. Then, we can write ah+ bk = 1 for some a, b ∈ Z. Second, if d = (m, k) is the gcd, then there are t, v
such that tm+ vk = d. Let u = at. Finally, since r is the lcm ofm and k, we have r = mk/d. So,

θuωv = θatωv = ζhatk ζvm = ζ
(1−bk)t
k ζvm = ζtkζ

v
m = ζtrd/mζvrd/k = ζtm/d

r ζvk/dr = ζ(tm+vk)/d
r = ζr

as claimed.

Exercise (2.10).

Proof. We’ll proceed by induction on m. As a base case, suppose that m is a power of two, i.e. m = 2a for some a ≥ 1 (since
m is even). Then we can write r = 2br′ for some r′ odd and b ≥ a. Thus, we get:

2a−1 = ϕ(m) ≥ ϕ(r) = 2b−1ϕ(r′)

which gives a = b and ϕ(r′) = 1, so r′ = 1, since r′ is odd. I.e. r = 2a = m as claimed.
Otherwise,m has an odd prime divisor p. Similar to above, writem = pam′ and r = pbr′ for a ≤ b andm′, r′ not divisible

by p. Then,

ϕ(m′) =
ϕ(m)

ϕ(pa)
≥ ϕ(r)

ϕ(pb)
= ϕ(r′)

since ϕ is multiplicative and ϕ(pj) = pj−1(p − 1) is increasing in j. But m′ is even and m′ | r′, so by induction, we have
m′ = r′. Finally, we have

pa−1(p− 1) = ϕ(pa) =
ϕ(m)

ϕ(m′)
≥ ϕ(r)

ϕ(r′)
= ϕ(pb) = pb−1(p− 1)

so a ≥ b, i.e. a = b. So, r = m and we’re done.

Exercise (2.11).

Proof. Factorize f : f(x) =
∏n

i=1(x− ai). Then, the coefficient of xr is∑
S

∏
i∈S

(−ai)

where S ranges over all subsets of {1, . . . , n} with |S| = r. So, the magnitude of the coefficient is at most∣∣∣∣∣∑
S

∏
i∈S

(−ai)

∣∣∣∣∣ ≤∑
S

∏
i∈S

|ai| =
∑
S

1 =

(
n

r

)

since there are exactly
(
n
r

)
such S.

Second, consider the set Tn of all roots of all polynomials with integer coefficients of degree n such that the coefficient
of xr has magnitude at most

(
n
r

)
. Notice this is a finite set, since there are finitely many such polynomials and each one has

at most n distinct roots. I claim this contains all described numbers. Indeed, let α be an algebraic integer of degree n all of
whose conjugates have magnitude 1. Then, let f be the (monic) minimal polynomial of α. We’ve seen that f must have integer
coefficients since α is an algebraic integer. Then, all roots of f have magnitude 1, since the roots are precisely the conjugates
of α. Hence, the computation above shows that α ∈ Tn since f is one of the described polynomials.

Finally, in this case, note that αk is also an algebraic integer for all k ≥ 1, and that |σi(α
k)| = |σi(α)|k = 1 for all

embeddings σi. Finally, αk ∈ Q(α), so αk has degree at most n. Hence, all of the powers of α are contained in the finite set
T1 ∪ · · · ∪ Tn, and so by Pigeonhole, we must have αj = αk for some j < k. I.e. αk−j = 1 so α is a root of unity.

Exercise (2.12).
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Proof. First, note that the conjugate of an element of Z[ω] is again in Z[ω] since ω = ω−1. Hence, if u is a unit in Z[ω], we have
v ∈ Z[ω] with uv = 1, and so 1 = u · v and so u is also a unit in Z[ω]. Hence, u/u ∈ Z[ω] is an algebraic integer. Finally, to see
that u/u is a root of unity, it suffices to show that each conjugate has magnitude 1. But any automorphism of Q[ω] commutes
with complex conjugation, so if σ is such an automorphism, then:∣∣∣σ (u

u

)∣∣∣ = ∣∣∣∣∣σ(u)σ(u)

∣∣∣∣∣ = 1

which completes the claim. We’ve characterized the roots of unity in Q[ω] to be precisely the 2pth roots of unity, since p is
odd, which can be written as ±ωk for some 0 ≤ k < p.

Now, suppose for contradiction that u/u = −ωk for some k. Then, up = (−uωk)p = −up. But now, by (1.25), we have
that up ≡ a (mod p) for some a ∈ Z. Then,

a ≡ up ≡ −up ≡ −a (mod p)

Hence p | 2a, and so p | a since p is an odd prime. So, p | up, i.e. up = pα for some α ∈ Z[ω]. But u is a unit, so dividing by it
gives 1/p ∈ Z[ω], which is not true.

Exercise (2.13).

Proof. As noted, for a number field K and α ∈ A ∩ K , α is a unit if and only if N(α) = ±1. So, let m ∈ Z be squarefree,
negative, and neither of −1,−3, and letK = Q(

√
m). Now, writing α = a+ b

√
m, we haveN(α) = a2 −mb2. Sincem < 0,

we have that a2 −mb2 ≥ 0, and so if α is a unit, it must have norm +1. We now show that b must be zero by casework.
If m ≡ 1 (mod 4), then we have m ≤ −7 since we’ve excluded the case m = −3. We also have a, b ∈ 1

2Z in this case. If
b ̸= 0, then we have b2 ≥ 1

4 , and so a2 −mb2 ≥ 0 + 7
4 > 1, contrary to assumption. So b = 0 in this case.

Otherwise, m ≡ 2, 3 (mod 4), so m ≤ −2 and a, b ∈ Z. Then, if b ̸= 0 we have a2 −mb2 ≥ 2 · 1 > 1, again contrary to
assumption.

So, in either case we have b = 0. Then we need a2 = 1, and so a = ±1which gives that α = ±1 are the only possible units.
It is also clear that they are both units.

For the case m = −1, we have A ∩ Q[i] = Z[i] and we’ve seen that the units are precisely ±1,±i. For the case m = −3,
we have A ∩QQ[

√
−3] = Z[ω] for ω a primitive cube root of unity. Then the units are ±1,±ω,±ω2.

Exercise (2.14).

Proof. We have that 1 +
√
2 is a unit since

(1 +
√
2)(

√
2− 1) = 2− 1 = 1

But it isn’t a root of unity since 1+
√
2 is a real number greater than 1, so (1+

√
2)n > 1 for all n. Hence, the elements (1+

√
2)n

are distinct for all n, but they are all elements of Z[
√
2]. So, there are integers an, bn ∈ Zwith (1+

√
2)n = an+ bn

√
2. Taking

norms, we get:
a2n − 2b2n = N((1 +

√
2)n) = N(1 +

√
2)n = (−1)n

So, this gives infinitely many solutions to each of a2 − 2b2 = 1 and a2 − 2b2 = −1 for integers a, b by taking n even and odd,
respectively.

Exercise (2.15).

Proof. An arbitrary element of Z[
√
−5] is of the form a + b

√
−5 and has norm a2 + 5b2. But there are clearly no integer

solutions to a2 + 5b2 = 2, 3, since such a solution must have b = 0, else a2 + 5b2 would be too large, but then a =
√
2,
√
3,

which are not integers.

Now, to see that 2 · 3 = (1 +
√
−5)(1−

√
−5) is an example of nonunique factorization, it suffices to note that each term

is irreducible and that neither 1±
√
−5 is divisible by 2 in Z[

√
−5]. The latter fact is obvious, and to note that the elements are

irreducible, we take norms:

N(2) = 4 N(3) = 9 N(1±
√
−5) = 6

But then if α is a proper irreducible factor of one of these terms, we would get N(α) is a nonunit integer divisor of the
corresponding norm. But then N(α) has to be either 2 or 3, which we’ve seen cannot be.
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Exercise (2.16).

Proof. First, note that T (α) = α+ iα− α− iα = 0. Similarly, we have T (α2), T (α3) = 0. So, as suggested by the hint, write√
3 = a + bα + cα2 + dα3, and by linearity of the trace, we have T (

√
3) = a. On the other hand, we know that the only

conjugates of
√
3 are ±

√
3, so T (

√
3) = 2(

√
3−

√
3) = 0. So, a = 0.

Continuing with the hint, consider
√
3/α = b + cα + dα2. This has trace b. On the other hand, we have precisely four

conjugates:
±
√
3/α,±i

√
3/α

since these are all roots of 2t4 − 9, which is irreducible since its reciprocal polynomial 9t4 − 2 is irreducible by Eisenstein
(p = 2). But the sum of these is also zero, so we get b = 0.

Similarly, we have
√
3/α2 = c + dα, and taking traces gives c = 0 since the conjugates are ±

√
3/α2. Finally, we have√

3 = dα3, and squaring gives 3 = d2α6 = 2d2α2, which contradicts linear independence of 1 and α2 over Q.

Exercise (2.17).

Proof. AssumeL/K is a finite extension of degree n as usual. Note thatK ⊆ K[α] ⊆ L is a tower of fields. Hence, in particular,
L is a K[α]-vector space, so we can choose a basis β1, . . . , βr . Then, if α is an element of degree d over K (it must be finite
since L/K is finite), then it satisfies a polynomial

αd + cd−1α
d−1 + · · ·+ c0 = 0

Then, 1, α, . . . , αd−1 is a basis for K[α] over K . Then the n = dr elements βiα
j for 1 ≤ i ≤ r and 0 ≤ j < d form a basis for

L overK . With respect to this basis, multiplication by α is block diagonal, with each block of the form:

0 0 0 0 · · · 0 −c0
1 0 0 0 · · · 0 −c1
0 1 0 0 · · · 0 −c2
0 0 1 0 · · · 0 −c3
...

...
...

...
. . .

...
...

0 0 0 0 · · · 0 −cd−2

0 0 0 0 · · · 1 −cd−1


and a total of r blocks (one for each βi). Then the trace of this block is −cd−1, which is the sum of the roots of the minimal
polynomial above of α, i.e. −cd−1 = t(α) as denoted in the text. This gives the equality on traces: T (α) = n

d t(α) = r(−cd−1),
which is the trace of the full block diagonal matrix.

The determinant is similar: the determinant of the above block is (−1)dc0, which is the product of the roots of the minimal
polynomial. In other words, we have N(α) = (n(α))n/d =

[
(−1)dc0

]r , which is the determinant of the full block diagonal
matrix.

Exercise (2.18).

Proof. Suppose that σiτj = σrτs pointwise onM . Then, each τa fixes L pointwise, so for ℓ ∈ L, we have:

σi(ℓ) = σi(τj(ℓ)) = σr(τs(ℓ)) = σr(ℓ)

So, we must have i = r since σi and σr act identically on L. In N , we can now compose with the automorphism σ−1
i to get

τj = τs onM , which implies j = s, as desired.

Exercise (2.19).

Proof. For the induction, note that if n = 1, we have that the determinant of the 1× 1 matrix 1 is just 1, which is the product
over pairs i, j of ai − aj (since it is the empty product).

Now, for the induction step, let

A =

 1 a1 · · · an−1
1

...
...

. . .
...

1 an · · · an−1
n

 and B =


1 a1 · · · an1
...

...
. . .

...
1 an · · · ann
1 an+1 · · · ann+1



6



and we assume
det(A) =

∏
1≤i<j≤n

(ai − aj)

Now, consider the polynomial:

f(t) =

n∏
i=1

(t− ai) = tn + cn−1t
n−1 + · · ·+ c0

and define

C =


1 0 · · · 0 c0
0 1 · · · 0 c1
...

...
. . .

...
...

0 0 · · · 1 cn−1

0 0 · · · 0 1


Then, we have det(C) = 1, and so:

det(B) = det(B) det(C)

= det(BC)

= det


1 a1 · · · an−1

1 f(a1)
1 a2 · · · an−1

2 f(a2)
...

...
. . .

...
...

1 an · · · an−1
n f(an)

1 an+1 · · · an−1
n+1 f(an+1)



= det


1 a1 · · · an−1

1 0
1 a2 · · · an−1

2 0
...

...
. . .

...
...

1 an · · · an−1
n 0

1 an+1 · · · an−1
n+1 f(an+1)


= f(an+1) det(A)

=

n∏
i=1

(an+1 − ai) ·
∏

1≤i<j≤n

(aj − ai)

=
∏

1≤i<j≤n+1

(aj − ai)

as desired.

Exercise (2.20).

Proof. First, note that f has no repeated roots. Indeed, if β ∈ C is a multiple root of f , then f(x) = (x − β)2g(x) for some
g ∈ C[x]. Then f ′(x) = 2(x−β)g(x)+(x−β)2g′(x) has β as a root. In other words, both f and f ′ are divisible by the minimal
polynomial of β inK[x], and since f is irreducible, it must actually equal the minimal polynomial of β. But then f | f ′, which
cannot be since deg(f ′) < deg(f).

So, we have that
f(x) =

∏
β

(x− β)

where the product ranges over all roots of f in C. Then,

f ′(x) =
∑
γ

∏
β ̸=γ

(x− β)

and so
f ′(α) =

∑
γ

∏
β ̸=γ

(α− β) =
∏
β ̸=α

(α− β)

as desired.
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Exercise (2.21).

Proof. Let m ∈ Z[x] be the minimal polynomial for α. Then, since f(α) = 0, we have m | f , so that f(x) = m(x)g(x) for
some polynomial g. By Gauss’ Lemma, g ∈ Z[x] and is monic. Then,

N(f ′(α)) = N(m′(α)g(α) +m(α)g′(α)) = N(m′(α)g(α)) = N(m′(α))N(g(α)) = ±disc(α)N(g(α))

which shows the claim since N(g(α)) ∈ Z.

Exercise (2.22).

Proof. Note that

P =
∑
g∈An

n∏
i=1

σi(αg(i))

where An is the alternating group of even permutations. Similarly, N is the same, but with g /∈ An. This makes it clear that
P,N are algebraic integers, since ach σi(αj) is, and these are in the ring they generate.

Now, fix a normal extension L ofK/Q. Let f be an automorphism of L. Then, for each i, f ◦ σi is an embedding ofK into
C that fixes Q, so f ◦ σi = σh(i) for some h(i). Then h is a permutation since composing with f−1 inverts this association. So,

f(P ) =
∑
g∈An

n∏
i=1

f(σi(αg(i))) =
∑
g∈An

n∏
i=1

σh(i)(αg(i)) =
∑
g∈An

n∏
i=1

σi(α(g◦h−1)(i))

Thus, if h is even, then f(P ) = P and if h is odd, then f(P ) = N . Similarly, we find that f(N) = N or f(N) = P in these
two cases, respectively.

So, f fixes both P + N and PN . Since f was arbitrary, P + N and PN are fixed by every automorphism of L, so
that P + N and PN are in Q. Finally, this gives that they are algebraic integers in Q, so they must be in Z. This gives
d = (P −N)2 = (P +N)2 − 4PN is either 0 or 1 mod 4.

Exercise (2.23).

Proof. The generalized definition for the discriminant should be the following: given an extension of number fields L/K of
degree n, consider the K-embeddings σ1, . . . , σn of L into C. Define

discLK(α1, . . . , αn) = det((σi(αj))ij)
2

for any n-tuple of elements α1, . . . , αn ∈ L.
Then Theorem 6 generalizes immediately:

discLK(α1, . . . , αn) = det((TL
K(αiαj))ij)

The proof is the same as in the text, since it makes no explicit reference to Q or Z.

Similarly, the corollary generalizes: discLK(α1, . . . , αn) ∈ K , and if eachαi is an algebraic integer, then discLK(α1, . . . , αn) ∈
OK , which follows from the above since TL

K has image in K , and maps algebraic integers to elements of OK .

Theorem 7 now reads: discLK(α1, . . . , αn) = 0 iff α1, . . . , αn are linearly dependent overK . Again, the proof goes through
exactly as before.

Finally, theorem 8: Supposing L = K[α] and α1, . . . , αn are the images of α in C under the embeddings, we have

discLK(1, . . . , αn−1) =
∏

1≤r<s≤n

(αr − αs)
2 = (−1)n(n−1)/2NL

K(f ′(α))

where f is the minimal polynomial of α over K . The proof again requires little to no modification.

partb

partc

Exercise (2.24).
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Proof. As noted, any subgroup of Z is either trivial or infinite cyclic, and so is free abelian of rank 0 or 1. Now, suppose any
subgroup of Zn−1 is free abelian of rank ≤ n − 1, let H ⊆ Zn, let π : Zn → Z be projection onto the first coordinate and let
K = ker(π). Then π(H) is a subgroup of Z, so it is either trivial or infinite cyclic.

If it is trivial, thenH ⊆ K , soH is free abelian by the inductive hypothesis. Otherwise, choose h ∈ H with π(h) generating
the image. ThenH is the direct sum of ⟨h⟩ andH ∩K . Indeed, if g ∈ H , then π(g) ∈ π(H), so π(g) = π(hr) for some r. Thus
h−rg ∈ ker(π) = K and is clearly in H , so g = hr(h−rg) is in ⟨h⟩ (H ∩K) as desired. Further, nothing is in the intersection
since π(hr) is nonzero for all nonzero r. SinceH ∩K is a subgroup ofK , it is free abelian of rank at most n− 1, so this gives
that H is free abelian of rank at most n.

Exercise (2.25).

Proof. Since α is algebraic, it satisfies a polynomial with coefficients in Z (not necessarily monic) by clearing denominators. I.e.

anα
n + · · ·+ a1α+ a0 = 0

for some a0, . . . , an ∈ Z and an ̸= 0. Multiplying through by an−1
n gives:

(anα)
n + an−1(anα)

n−1 + an−2an(anα)
n−2 + · · ·+ an−1

n a0 = 0

and this is an integral relation for anα.
So, if {α1, . . . , αk} is a finite set of algebraic numbers, there are integersm1, . . . ,mk such thatmiαi are algebraic integers

for all i, whence mαi is an algebraic integer for all i for m = m1 · · ·mk .

Exercise (2.26).

Proof.

Exercise (2.27).

Proof.

Exercise (2.28). Let f(x) = x3 + ax+ b, a, b ∈ Z, and assume f is irreducible over Q. Let α be a root of f .

(a) Show that f ′(α) = −(2aα+ 3b)/α.

(b) Find NQ[α]
Q (2aα+ 3b).

(c) Show that disc(α) = −(4a3 + 27b2).

(d) Suppose α3 = α+ 1. Prove that {1, α, α2} is an integral basis for the ring of integers in Q[α]. Do the same if α3 + α = 1.

Proof.

(a) We have
αf ′(α) = α(3α2 + a) = 3α3 + aα = 3(−aα− b) + aα = −(2aα+ 3b)

as claimed.

(b) Now, let α1, α2, α3 denote the three roots of f . Then,

f(x) =
∏
i

(x− αi)

and

N(2aα+ 3b) =
∏
i

(2aαi + 3b)

= (−2a)3
∏
i

(
− 3b

2a
− αi

)
= −8a3f

(
− 3b

2a

)
= −8a3

(
−27b3

8a3
− a

3b

2a
+ b

)
= 27b3 + 4a3b

9



(c) So, we can compute the discriminant, noting that N is multiplicative and N(α) = −b from the constant term of f :

disc(α) = −N(f ′(α)) = −N

(
−2aα+ 3b

α

)
= −(−1)3

b(27b2 + 4a3)

−b
= −(4a3 + 27b2)

as claimed.

(d) Finally, we consider the explicit examples. If α3 = α+ 1, then

disc(α) = −(4(−1)3 + 27(−1)2) = −23

This is squarefree, so we get that Z[α] is the ring of integers in Q(α). Second, if α3 + α = 1, then

disc(α) = −(4 · 13 + 27(−1)2) = −31

which is also squarefree, giving the same result.

Exercise (2.29).

Proof. In the first case, let R = Z[(1 +
√
m)/2] and S = Z[(1 +

√
n)/2], and note these are the rings of integers in each

of their fraction fields. Then, disc(R) = m and disc(S) = n are coprime, so the ring of integers in Q(
√
m,

√
n) is RS =

Z[(1 +
√
m)/2, (1 +

√
n)/2], which has integral basis:

1,
1 +

√
m

2
,
1 +

√
n

2
,
1 +

√
m+

√
n+

√
mn

4

and discriminant (mn)2 by Exercise 23(c).

In the second case, let R = Z[(1 +
√
m)/2] as before, but let S = Z[

√
n] to be the corresponding rings of integers again.

Then disc(R) = m and disc(S) = 4n are again coprime, so the ring of integers inQ(
√
m,

√
n) is RS which has integral basis:

1,
1 +

√
m

2
,
√
n,

1 +
√
m

2

√
n

and discriminant 16m2n2.

Exercise (2.30). Let K = Q[
√
7,
√
10] and fix any α ∈ A ∩ K . We will show that A ∩ K ̸= Z[α]. Let f denote the monic

irreducible polynomial for α over Z and for each g ∈ Z[x] let g denote the polynomial in Z3[x] obtained by reducing coefficients
(mod 3).

(a) Show that g(α) is divisible by 3 in Z[α] iff g is divisible by f in Z3[x].

(b) Now suppose Z ∩K = Z[α]. Consider the four algebraic integers

α1 = (1 +
√
7)(1 +

√
10)

α2 = (1 +
√
7)(1−

√
10)

α3 = (1−
√
7)(1 +

√
10)

α4 = (1−
√
7)(1−

√
10)

Show that all products αiαj (i ̸= j) are divisible by 3 in Z[α], but that 3 does not divide any power of any αi.

(c) Let αi = fi(α), fi ∈ Z[x] for each i = 1, 2, 3, 4. Show that f | fifj (i ̸= j) in Z3[x] but f ∤ fi
n
. Conclude that for each i ,

f has an irreducible factor (over Z3) which does not divide fi but which does divide all fj , j ̸= i.

(d) This shows that f has at least four distinct irreducible factors over Z3. On the other hand f has degree at most 4. Why is that
a contradiction?
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Proof. We show the first claim. Suppose g(α) is divisible by 3. Then there is some β ∈ Z[α] with g(α) = 3β, and β = h(α) for
some h ∈ Z[x]. Then α is a root of g(x)− 3h(x), so f | g − 3h. Reducing mod 3 gives f | g as claimed. Each of these steps is
reversible: if f | g, then f | g + 3h for some h, whence g(α) + 3h(α) = 0, i.e. g(α) = −3h(α) is a multiple of 3.

For the second, note that (1 +
√
7)(1−

√
7) = −6 and (1 +

√
10)(1−

√
10) = −9 are both multiples of 3, so each product

αiαj is a multiple of 3 since each product consists of at least one of these pairs of terms. On the other hand, we do have that
the αi are a full set of conjugates, so the trace of αn

i is

αn
1 + αn

2 + αn
3 + αn

4

On the other hand, we have
4n = (α1 + α2 + α3 + α4)

n = αn
1 + αn

2 + αn
3 + αn

4 + · · ·

where the excluded terms, from the binomial theorem, each include the product of two different terms. In other words, each
term in the “· · · ” is a multiple of 3 in Z[α], so we can write the trace as 1+ 3β for some β ∈ Z[α]. By unique representation of
numbers in Q(α), we thus have that β ∈ Z, since the trace is an integer. I.e. the trace is 1 mod 3 and therefore not a multiple
of 3. So, αn

i is not a multiple of 3 in Z[α].

The next result is immediate by combining these two: for αi = fi(α), we have that 3 divides αiαj , so f divides fifj in
F3[x], and 3 does not divide αn

i , so f does not divide fn
i . Since F3[x] is a UFD (even a PID), we have that this latter statement

implies that there is a prime πi that divides f but not fi. But then πi divides fifj , so it divides fj for all j ̸= i.

Finally, we have that f is divisible by the four (distinct) primes π1, . . . , π4 and hence their product. These cannot all be
degree 1, since there are only three degree 1 monic polynomials in F3[x]: x, x+1, x+2. So, at least one has degree 2, whence
the product has degree at least 1 + 1 + 1 + 2 = 5. But f is the minimal polynomial of α, and so has degree 4. This gives the
contradiction. Thus the ring of integers is not monogenic.

Exercise (2.31).

Proof. Let α = (
√
3 +

√
7)/2. Then,

4α2 = 10 + 2
√
21

so that:
84 = (4α2 − 10)2 = 16α4 − 80α2 + 100

i.e.
α4 − 5α2 + 1 = 0

so that α is an algebraic integer. But α isn’t inRS whereR = Z[
√
3] and S = Z[

√
7] are the rings of integers of their respective

fraction fields, despite α being in the compositum field.

Exercise (2.32).

Proof. Let ω be a primitive cube root of unity, and let α = 3
√
2 be the (real) cube root of two. Then Q(α) and Q(ωα) are fields

of degree three over Q, while the compositum is Q(α, ω) has degree six over Q.

Exercise (2.33).

Proof. Note that the norm is the product of the conjugates, and that we’ve determined the conjugates of ω to be precisely ωk

for 1 ≤ k ≤ m coprime to m. But if (k,m) = 1, then (m − k,m) = 1, and m − k ̸= k since otherwise m = 2k and
(k,m) = k = m/2 > 1. This gives a pairing on the set of conjugates, so we get:

N(ω) =
∏

1≤k≤m
(k,m)=1

=
∏

1≤k<m/2
(k,m)=1

ωkωm−k = 1

since each term equals 1.

Exercise (2.34).
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Proof. Let α = 1 + ω + · · ·+ ωk−1. Sincem and k are coprime, there are a, b ∈ Z with am+ bk = 1. Then, let

β = 1 + ωk + ω2k + · · ·+ ω(b−1)k

Then,

αβ =

(
k−1∑
i=0

ωi

)b−1∑
j=0

ωjk

 =

k−1∑
i=0

b−1∑
j=0

ωjk+i =

bk−1∑
n=0

ωn =
1− ωbk

1− ω
=

1− ω1−am

1− ω
=

1− ω

1− ω
= 1

for n = jk + i - the ranges for i, j biject via this map onto n = 0, . . . , bk − 1.

For the second half, note that we have
p =

∏
1≤k≤m

p∤k

(1− ωk)

For such a k, we have:
(1 + ω + · · ·+ ωk−1)(1− ω) = 1− ωk

and we’ve just shown this first factor is a unit. So, 1− ωk = uk(1− ω) for a unit uk for each such k. So,

p =
∏

1≤k≤m
p∤k

uk(1− ω) = u(1− ω)n

where u is the product of the uk and hence a unit, and n = φ(m) is the number of terms in the product.

Exercise (2.35).

Proof. Since ωθ = ω2 + 1, we have that ω is a root of x2 − θx+ 1.

Second, note that ω = ω−1, and so θ = ω + ω−1 = ω−1 + ω = θ, so θ ∈ R. Then, we have Q(θ) ⊆ Q(ω) ∩ R ⊆ Q(ω),
and the last inclusion is proper since ω ̸∈ R. But the tower has degree at most 2 since ω satisfies a degree 2 polynomial over
Q(θ), and sowemust have the degree is exactly two and the intermediate degrees are 1 and 2, respectively, i.e. Q(θ) = Q(ω)∩R.

Note σ has order 2, so the fixed field K has degree 2 as a subfield of Q(ω). Further, σ(θ) = θ as we’ve already noted, so
θ ∈ K which gives Q(θ) ⊆ K ⊆ Q(ω), and the degrees again force K = Q(θ).

In one direction, we have:
A ∩Q[θ] ⊆ Q[θ] ⊆ R and A ∩Q[θ] ⊆ A ∩Q[ω] = Z[ω]

Conversely:
R ∩ Z[ω] ⊆ R ∩Q[ω] = Q[θ] and R ∩ Z[ω] ⊆ Z[ω] ⊆ A

so the two sets are equal.

More generally, let B be a ring with a subring A such that B is a free A-module, and let u ∈ B be a unit. Then, if {bi} is a
basis for B over A, then {biu} is also a basis for B over A. Indeed, it spans, for if b ∈ B, then bu−1 ∈ B, so there exists ai ∈ A
with

bu−1 =
∑
i

aibi

and multiplying by u gives the result. Further, they are independent, for if∑
i

aibiu = 0

then multiplying through by u−1 gives a relation on the original basis, whence each ai is zero.
So, {1, ω, ω−1, . . . , ωn−1, ω1−n, ωn} is an integral basis since it is obtained from the usual basis {1, ω, . . . , ω2n−1} by

multiplying through by the unit ω1−n.
Finally, to see that {1, ω, θ, θω, . . . , θn−1, θn−1ω} is a basis, we want to express each element in terms of the previous basis.

Half of the terms are just powers of θ, which can be evaluated:

θk = (ω + ω−1)k =

k∑
i=0

(
k

i

)
ωk−2i

12



and so this column of the change-of-basis matrix indeed has integer entries, and further, the exponents are in the range
−k, . . . , k, so this column has all zeros below the main diagonal. The following column is θkω, which is given by taking
this column and shifting each entry down one position. Hence, the entire matrix has integer entries and is upper triangular. So,
the determinant is the product of the diagonal, which is the coefficient of ω−k in θk , which is 1 for each term. So, this matrix
has determinant 1, showing that this set has the same discriminant (and so is also a basis).

We know that Z[θ] ⊆ Q(θ) ∩ A since each of these are algebraic integers in this field. We’ve also shown that Q(θ) ∩ A =
Z[ω]∩R, and any element of this ring is a Z-linear combination of θk and θkω for k = 0, . . . , n− 1. Let x be such an element,
and group terms, so that

x = (a0 + · · ·+ an−1θ
n−1) + ω(b0 + · · ·+ bn−1θ

n−1)

for integers ai, bi. But if the first parenthesized term is already in R since Z[θ] ⊆ R, so in order for x to be in Z[ω] ∩ R, we
must have that the second term is also real. But it is a real multiple of ω, which can only be real if it is zero. So, we get that

x = a0 + · · ·+ an−1θ
n−1 ∈ Z[θ]

as claimed.

Finally, we consider m = p for an odd prime p, so that n = φ(m)/2 = (p − 1)/2. Now consider the tower of fields
Q ⊆ Q(θ) ⊆ Q(ω). Then 1, θ, . . . , θn−1 is a basis for Q(θ) over Q, and 1, ω is a basis for Q(ω) over Q(θ). So, by exercise 23,
we get:

disc
Q(ω)
Q (1, ω, θ, θω, . . . , θn−1, θn−1ω) =

(
disc

Q(θ)
Q (1, θ, . . . , θn−1)

)2
N

Q(θ)
Q

(
disc

Q(ω)
Q(θ) (1, ω)

)
The LHS is the discriminant of an integral basis of Q(ω), which does not depend on the basis, so we have that it equals
(−1)npp−2. For the final term, we can compute directly. For brevity, let T = Tr

Q(ω)
Q(θ) . From the constant term of the minimal

polynomial x2 − θx+ 1 of ω over Q(θ), we can see that the other conjugate of ω is ω−1. Thus,

disc
Q(ω)
Q(θ) (1, ω) = det

(
1 ω
1 ω−1

)2

= (ω − ω−1)2

Now we need to take the norm. By transitivity, we have:

N
Q(ω)
Q (ω − ω−1) = N

Q(θ)
Q (N

Q(ω)
Q(θ) (ω − ω−1))

= N
Q(θ)
Q ((ω − ω−1)(ω−1 − ω))

= N
Q(θ)
Q (−(ω − ω−1)2)

= (−1)nN
Q(θ)
Q ((ω − ω−1)2)

So, it suffices to compute this first norm. Directly, we get:

N
Q(ω)
Q (ω − ω−1) =

p−1∏
i=1

(ωi − ω−i)

= ω
∑p−1

i=1 i

p−1∏
i=1

(1− ω−2i)

= ω(p−1)p/2

p−1∏
i=1

(1− ω−2i)

= p

since the exponent on ω is a multiple of p, and the product is the evaluation of (xp − 1)/(x − 1) at x = 1, since it has all the
primitive pth roots of unity as zeros.

Finally, we combine all of our computations to get:

(−1)npp−2 =
(
disc

Q(θ)
Q (1, θ, . . . , θn−1)

)2
(−1)np

and so
disc(θ) = disc

Q(θ)
Q (1, θ, . . . , θn−1) = p(p−3)/2

as claimed.
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Exercise (2.36).

Proof. First, we show the set spans. Let γ ∈ Rk+1. Then π(γ) ∈ π(Rk+1), so π(γ) = aπ(β) since π(β) generates the image.
Now, π(γ − aβ) = 0, so γ − aβ ∈ ker(π) ∩Rk+1. But ker(π) = Fk , so γ − aβ ∈ Fk ∩Rk+1 ⊆ Fk ∩R = Rk . The remaining
terms in the set form a Z-basis for Rk , so this shows that

γ = aβ +

(
a0 + a1

f1(α)

d1
+ · · ·+ ak−1

fk−1(α)

dk−1

)
for some ai ∈ Z. So it spans.

Further, the set is independent. Indeed, if

0 = aβ + a0 + · · ·+ ak−1
fk−1(α)

dk−1

Then, applying π gives 0 = aπ(β) since each fi has degree i < k. But π(β) generates the infinite cyclic image, so we must
have a = 0. Then the relation above becomes a relation on the remaining terms, which were known to be independent. So
ai = 0 for each i as well; thus the described set is a basis.

Exercise (2.37).

Proof. Let h = f − g. Then h has degree < n as well, but h(α) = f(α)− g(α) = 0. So h cannot be nonzero, else the degree of
α would be smaller than n, i.e. h = 0, so that f = g.

Exercise (2.38).

Proof. That this set is a basis is clear from the proof. Now, since d1 | · · · | dk−1, we have that dk−1Rk ⊆ Z[α]. Conversely,
suppose thatmRk ⊆ Z[α]. Then, in particular, fk−1(α)

dk−1
∈ Rk , so m

dk−1
fk−1(α) ∈ Z[α]. Since fk−1 has degree k− 1 < n, and α

is an algebraic integer of degree n, we have that the representation given here is unique, i.e. this is an element of Z[α] iff each
coefficient is an integer. Finally, fk−1 is monic, so the leading coefficient gives m/dk−1 ∈ Z, i.e. dk−1 | m, so m ≥ dk−1.

This shows that dk−1 is the smallest integer with the desired property.

Exercise (2.39).

Proof. Since each gj(α)/dj is an algebraic integer and the set {fi(α)/di} is an integral basis, there is an integer matrix A such
that

gj(α)/dj =
∑
i

Aijfi(α)/di

It suffices to show detA = 1. But since gj is monic of degree j, fi is monic of degree i, and i, j < n are all less than the degree
of α, we get that A must be upper triangular with each diagonal element equal to 1. So, detA = 1 as claimed.

Exercise (2.40).

Proof. It’s clear that the fi form an integral basis for Z[α]. Then,

disc(α) = disc(1, f1(α), . . . , fn−1(α)) = (d1 · · · dn−1)
2 disc

(
1,

f1(α)

d1
, . . . ,

fn−1(α)

dn−1

)
= (d1 · · · dn−1)

2 disc(R)

With respect to the basis 1, f1(α)/d1, . . . , fn−1(α)/dn−1, R is generated freely by the vectors e0, . . . , en−1 and Z[α] is
generated freely by e0, d1e1, . . . , dn−1en−1. So, the quotient is the product of the cyclic groups Z/diZ for i = 1, . . . , n − 1.
Thus, R/Z[α] has order d1 · · · dn−1.

For i, j with i+j < n, we have fi(α)/di and fj(α)/dj are inR, so their product is as well, i.e. fi(α)fj(α)/(didj) ∈ R. But
this is didj over a monic polynomial in α of degree i+ j, so the leading term comes from an integer multiple of fi+j(α)/di+j .
I.e. there is some n ∈ Z with n/di+j = 1/(didj), so that di+j = ndidj . This shows didj | di+j as claimed.

Finally, similarly, we have (f1(α)/d1)
i is in R, and it is a monic polynomial in α of degree i divided by di1, so we have

n/di = 1/di1 for some n ∈ Z. I.e. ndi1 = di, so di1 | di as claimed. Thus, d2i1 | d2i for each i, and taking the product
i = 1, . . . , n− 1 gives:

d
2+4+···+2(n−1)
1 |

n−1∏
i=1

d2i | disc(α)
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where the final divisibility comes from the first part and the fact that disc(R) is an integer. But the first term here is d(n−1)n
1 ,

so this gives the claim.

Exercise (2.41).

Proof. Theminimal polynomial for α overQ is f(x) = x3 −m, so we can compute the discriminant (since α has degree 3) via:

disc(α) = −N(f ′(α)) = −N(3α2) = −27N(α)2 = −27m2

where N(α) = m again comes from the minimal polynomial. Hence, from the previous problem, we get d61 = d
n(n−1)
1 |

disc(α) = −27m2. Since m is cubefree, m2 is sixth-power-free, i.e. the only possible prime divisor of d1 is 3, and 9 ∤ d1 since
312 ∤ 33m2. So, d1 = 1 or d1 = 3, and in the latter case 9 | m.

Suppose that d1 = 3, so that 9 | m. Then the first basis element is β = f1(α)/d1 = (α+ b)/3 for some b ∈ Z. Then,

β3 =
1

27
(m+ 3α2b+ 3αb2 + b3)

We have T (α) = 0 from the minimal polynomial. We have (α2)3 −m2 = 0 and α2 has degree 3 over Q since Q ⊊ Q(α2) ⊆
Q(α). So, x3 −m2 is the minimal polynomial of α2, which gives T (α2) = 0 as well. Thus,

T (β3) =
1

27
(3m+ 3b3) =

m+ b3

9

Since 9 | m and T (β3) ∈ Z, we have 9 | b3, i.e. 3 | b. So, b/3 ∈ Z ⊆ R, so α/3 = β − b/3 ∈ R, but α/3 /∈ R, since it has
minimal polynomial x3 − m/27, which doesn’t have integer coefficients. So, the contradiction gives d1 = 1. By exercise 39,
we may assume f1(x) = x.

Note that
(α2/k)3 = α6/k3 = m2/k3 = h2k4/k3 = h2k ∈ Z

So, α2/k satisfies x3 − h2k and is an algebraic integer. Note that this gives k | d2.

Considerm ≡ ±1 (mod 9). Then, for β = (α∓ 1)2/3, we have

27

(
β3 − β2 +

1± 2m

3
β − (m∓ 1)2

27

)
= (3β)3 − 3(3β)2 + 3(1± 2m)(3β)− (m∓ 1)2

= (α∓ 1)6 − 3(α∓ 1)4 + 3(1± 2m)(α∓ 1)2 − (m∓ 1)2

= (α6 ∓ 6α5 + 15α4 ∓ 20α3 + 15α2 ∓ 6α+ 1)− 3(α4 ∓ 4α3 + 6α2 ∓ 4α+ 1)

+ (3± 6m)(α2 ∓ 2α+ 1)− (m2 ∓ 2m+ 1)

= (∓6m+ 15− 18 + 3± 6m)α2 + (15m∓ 6− 3m± 12∓ 6− 12m)α

+ (m2 ∓ 20m+ 1± 12m− 3 + 3± 6m−m2 ± 2m− 1)

= 0

So, β satisfies this polynomial. We have 1± 2m ≡ 3 (mod 9), so the linear coefficient is an integer. We also have m∓ 1 ≡ 0
(mod 9), so its square is a multiple of 81, hence the constant term is an integer (even a multiple of 3). So β ∈ R.

Since m ≡ ±1 (mod 9), we have 3 ∤ k. So, k2 ≡ 1 (mod 3), whence there is some n ∈ Z with k2 − 1 = 3n. Then, since
α, α2/k, β ∈ R, so is kβ − nα2/k ± kα. But this is:

kβ − n
α2

k
± kα =

k(α∓ 1)2

3
− nα2

k
± kα =

k2α2 ∓ 2k2α+ k2 − 3nα2 ± 3k2α

3k
=

α2 ± k2α+ k2

3k

as claimed.

From the previous problem, we get that d22 | disc(α) = −27m2. So, for each prime, we have 2vp(d2) ≤ 3vp(3) + 2vp(m).
For p ̸= 3, this gives vp(d2) ≤ vp(m) = vp(3m) as desired. For p = 3, we have vp(d2) ≤ 3/2+vp(m), so vp(d2) ≤ 1+vp(m) =
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vp(3m) as well, since the equation is in integers, and so we get d2 | 3m.

Since p | d2 and f2(α)/d2 ∈ R, we have γ = (α2 + aα+ b)/p = f2(α)/d2 · (d2/p) ∈ R as claimed. We already computed
T (α) = T (α2) = 0, so T (γ) = 3b/p ∈ Z. So, p | 3b, and since p ̸= 3 we have p | b. So b/p is an integer and so γ − b/p ∈ R
whence (γ − b/p)3 ∈ R. We have

(γ − b/p)3 =
α6 + 3aα5 + 3a2α4 + a3α3

p3
=

3amα2 + 2a2mα+ (m2 +ma3)

p3

So, taking traces gives p3 | 3m(m + a3). Since p ̸= 3 we get p3 | m(m + a3) again. Since p | m but p2 ∤ m, this gives
p2 | m+a3. But again, p | m, so this gives p | a3, so p | a, so p3 | a3. But then p2 divides bothm+a3 and a3, so we get p2 | m,
contrary to assumption.

Now, suppose p ̸= 3 and p2 | m. Then p2 | hk2, so p2 | h or p2 | k2, but not both since they are coprime. But the first is
impossible since h is squarefree, so p | k | d2. We want to show p2 ∤ d2, so suppose p2 | d2 for contradiction. Mimicking the
argument above, we have f2(α)/p2 ∈ R, so by taking traces we get p2 | 3b, whence p2 | b and so (α2 + aα)/p2 ∈ R. Cubing
again gives:

m(α3 + 3aα2 + 3a2α+ a3)

p6
∈ R

So, taking the trace gives p6 | m(m + a3). So, p4 | m + a3, so p | a3, so p3 divides both m + a3 and a3, whence p3 | m,
contradicting that m is cubefree.

As suggested, we note that (f2(α)/d2)2 ∈ R, and we know d2R ⊆ Z[α], so:

α4 + 2aα3 + (a2 + 2b)α2 + 2abα+ b2

d2
=

(a2 + 2b)α2 + (2ab+m)α+ (b2 + 2am)

d2
∈ Z[α]

So, by uniqueness of representations, we get that d2 divides each of a2 + 2b, 2ab+m, and b2 + 2am, as desired.

Everything we’ve done has shown that for p ̸= 3 prime, that vp(d2) = vp(k) = vp(3k). Finally we do the casework to
determine v3(d2). First, suppose m ≡ ±1 (mod 9). Then, we have 3 | d2 since we’ve shown that (α2 ± k2α+ k2)/(3k) ∈ R
in this case, but we have 9 ∤ d2 since d2 | 3m. We also have v3(k) = 0 since 3 ∤ m, so we get v3(d2) = 1 = v3(3k). Hence in
this case d2 = 3k and we get the integral basis:

1, α,
α2 ± k2α+ k2

3k

in this case.

In all other cases, I will show that v3(d2) = v3(k), so that d2 = k. Then, we will conclude that

1, α,
α2

k

is an integral basis for R over Z. Our second case is whenm ≡ 4, 7 (mod 9). Suppose 3 | d2. Then 3 ∤ b, else 3 divides both b,
and 2ab+m, whence it divides m, contrary to assumption. Then, b ≡ a2 ≡ 1 (mod 3), and 1 ≡ m ≡ ab ≡ a (mod 3). So

(α− 1)2

3
=

α2 − 2α+ 1

3
=

α2 + aα+ b

3
− (a+ 2)α+ (b− 1)

3
∈ R

since the first term is our basis element and the second is in Z[α] since 3 | a+2, b− 1. Then we also get (α− 1)8/81 ∈ R, and
so taking the trace gives:

3(28α6 − 56α3 + 1)

81
=

28m2 − 56m+ 1

27
∈ Z

So, 27 | m2 − 2m + 1 = (m − 1)2, so 9 | m − 1, i.e. m ≡ 1 (mod 9), contrary to assumption. So, we get 3 ∤ d2 and k | d2
gives 3 ∤ k, so that v3(d2) = 0 = v3(k) as claimed.

Third, suppose m ≡ 2, 5 (mod 9), and again suppose 3 | d2. The same calculations above apply to get b ≡ 1 (mod 3) but
now give 2 ≡ m ≡ a (mod 3) this time. So,

(α+ 1)2

3
=

α2 + 2α+ 1

3
=

α2 + aα+ b

3
− (a− 2)α+ (b− 1)

3
∈ R
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for the same reason as before. So, the fourth power is in R, and its trace is an integer, i.e.

28m2 + 56m+ 1

27
∈ Z

whence 27 | m2+2m+1 = (m+1)2, so 9 | m+1, som ≡ −1 (mod 9), contrary to assumption. So again v3(d2) = 0 = v3(k).

Fourth, suppose m ≡ ±3 (mod 9). Then again 3 ∤ k, since otherwise 9 | k2 | m. Suppose 3 | d2. Then, we have
b2 ≡ am ≡ 0 (mod 3), so 3 | b, and a2 ≡ b ≡ 0 (mod 3), so 3 | a as well. So,

α2

3
=

α2 + aα+ b

3
− aα+ b

3
∈ R

But this means m2/27 = (α2/3)3 ∈ R ∩ Q = Z, so 27 | m2, so 9 | m, contrary to assumption. So, 3 ∤ d2, and
v3(d2) = 0 = v3(k) again.

Fifth and finally, suppose m ≡ 0 (mod 9). Then 3 | k | d2 and 9 ∤ k since it’s squarefree. It suffices to show 9 ∤ d2, since
then v3(k) = 1 = v3(d2) and the proof will be complete. So, suppose 9 | d2. Then,

a4 ≡ (−2b)2 ≡ 4b2 ≡ 4(−2am) ≡ 0 (mod 9)

so 3 | a, so that b ≡ 5a2 ≡ 0 (mod 9). Then f2(α)− b/9 = (α2 + aα)/9 ∈ R, and so its cube is also, so its trace is in Z. I.e.,
35 | m(m + a3), so 33 | m + a3, but then 3 | a and 33 | a3, so that 33 | m, contrary to m being cubefree. So, finally, we get
9 ∤ d2 as claimed, completing the proof.

Exercise (2.42).

Proof. One direction is clear. Suppose α ∈ R. Then NK
Q(

√
m)

(α) is the product of (some of the) conjugates of α, which are all
algebraic integers, and so the product is also an algebraic integer. Similarly, TK

Q(
√
m)

(α) is the sum of algebraic integers, and so
is also an algebraic integer.

Conversely, suppose that both this trace and norm are algebraic integers. Then consider the (monic) minimal polynomial
of α over Q(

√
m). Since [K : Q(

√
m)] ≤ 2, this polynomial has two coefficients other than the leading coefficient, which are

therefore this norm (the constant term) and trace (the linear term). I.e. α satisfies a monic polynomial with algebraic integer
coefficients, so that α is itself an algebraic integer (see, e.g., exercise 4). Note that this proof only relies on Q(

√
m) ⊆ K being

a degree 2 subextension. So, we reach the same conclusion about
√
n,

√
k.

Consider the case m ≡ 3 (mod 4) and n, k ≡ 2 (mod 4). Let α ∈ R, so α = A + B
√
m + C

√
n + D

√
k for some

A,B,C,D ∈ Q (since
√
k is aQ-multiple of

√
mn). Then, all of the traces are algebraic integers, so 2A+2C

√
n, 2A+2B

√
m,

and 2A + 2D
√
k are all algebraic integers. Since m,n, k are squarefree and not congruent to 1 modulo 4, we get that each of

the coefficients are integers, i.e. A,B,C,D ∈ 1
2Z, which gives the first result:

α =
a+ b

√
m+ c

√
n+ d

√
k

2

for a, b, c, d ∈ Z. Then, taking the trace over Q(
√
m) gives that

a+ b
√
m+ c

√
n+ d

√
k

2
· a+ b

√
m− c

√
n− d

√
k

2

=
(a+ b

√
m)2 − (c

√
n+ d

√
k)2

4

=
a2 + 2ab

√
m+mb2 − nc2 − 2cd

√
nk − kd2

4

=
(a2 +mb2 − nc2 − kd2) + (2ab− 2cdn/ gcd(n,m))

√
m

4

is an algebraic integer. I.e. 4 | a2 + mb2 − nc2 − kd2 and 4 | 2ab − 2cdn/ gcd(n,m). Since m is odd, gcd(n,m) is odd, so
2cdn/ gcd(m,n) is a multiple of 4. So, 4 | 2ab, so 2 | ab, and at least one is even. We have:

2(c2 + d2) ≡ nc2 + kd2 ≡ a2 +mb2 ≡ a2 − b2 (mod 4)
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But then a2 − b2 is even, so a ≡ b (mod 2). Since one is even, both are. Thus the above equation is zero throughout (mod 4),
so c2 + d2 is even, which means c ≡ d (mod 2) as well. Conversely, if a, b are even and c, d have the same parity, then it is
clear that NK

Q(
√
m)

(α) is an algebraic integer. Thus, α is a Z-linear combination of

1,
√
m,

√
n,

√
n+

√
k

2

and each of these is an algebraic integer. So, it’s an integral basis.

CASES C,D OMITTED FOR NOW.

Note that Q(
√
m,

√
n) = Q(

√
m,

√
k) since

√
n = gcd(m,n)

√
k/

√
m. So, we can interchange n,m, k in any order.

Thus we’ve covered all cases. Indeed, we summarize the cases for m,n, k (mod 4) in the below table, using the fact that
k = nm/ gcd(m,n)2, along with which case (b/c/d) covers it:

m n k Case
1 1 1 (d)
1 2 2 (c)
1 3 3 (c)
2 2 ±1 (b),(c)
2 3 2 (b)
3 3 1 (c)

In particular, if m,n are not both even, then gcd(m,n) is odd, so gcd(m,n)2 ≡ 1 (mod 4) and k ≡ mn (mod 4).

In all cases, we have

discKQ (1,
√
m,

√
n,

√
mn) = disc

Q(
√
m)

Q (1,
√
m)2N

Q(
√
m)

Q (discKQ(
√
m)(1,

√
n))

= (4m)2N
Q(

√
m)

Q (4n)

= (16mn)2

Multiplying the last term by 1/ gcd(m,n) gives:

disc(1,
√
m,

√
n,

√
k) =

(16mn)2

gcd(m,n)2
= 256mnk

We adjust this for each of the following cases.
In case (b), we can write the basis in terms of our given elements using the matrix:

1 0 0 0
0 1 0 0
0 0 1 1/2
0 0 0 1/2


Thus, the discriminant of the ring in case (b) is 256mnk/22 = 64mnk as claimed. In this case, the three quadratic subfields
have discriminants 4m, 4n, 4k, respectively, so we get 64mnk = (4m)(4n)(4k), also as claimed.

In case (c), we have the change of basis matrix:
1 1/2 0 0
0 1/2 0 0
0 0 1 1/2
0 0 0 1/2


Thus, the discriminant of the ring in case (c) is 256mnk/42 = 16mnk = (m)(4n)(4k).

In case (d), we swap n, k in the basis and have the change of basis matrix:
1 1/2 1/2 1/4
0 1/2 0 1/4
0 0 0 1/4
0 0 1/2 gcd(m,n)/4


Thus, the discriminant of the ring in this case is 256mnk/(−16)2 = mnk, which is exactly the product ofm,n, k, the discrim-
inants of the quadratic subfields.
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Exercise (2.43).

Proof. We have:

disc(α) = N(f ′(α)) = N(5α4 + a) =
N(5α5 + aα)

N(α)
=

N(5(−aα− b) + aα)

−b
=

N(4aα+ 5b)

b

To find this last norm, we need to multiply the conjugates. We have:

f(x) =
∏
i

(x− αi)

where the αi denote the five conjugates of α. So,

N(4aα+ 5b) =
∏
i

(4aαi + 5b)

= (−4a)5
∏
i

(
− 5b

4a
− αi

)
= −45a5f

(
− 5b

4a

)
= −45a5

(
− 55b5

45a5
− a

5b

4a
+ b

)
= 55b5 + (445− 45)a5b

So, overall, we get:

disc(α) =
55b5 + 44a5b

b
= 55b4 + 44a5

as claimed.

When a = b = −1, disc(α) = 55 − 44 = 3125− 256 = 2869 = 19 · 151, is squarefree. So, the ring of integers is Z[α].

In this case, we have
disc(α) = a4(44a+ 55)

The latter factor is squarefree, and a is squarefree, so disc(R) must be one of disc(α),disc(α)/a2,disc(α)/a4. I.e. we have
d1 | d2 | d3 | d4 and (d1d2d3d4)2 is one of 1, a2, a4, i.e. d1d2d3d4 is one of 1, a, a2. This forces d1 = 1, since d41 | d1d2d3d4 | a2
and a is squarefree. Similarly, d2 = 1 since d32 | d1d2d3d4 | a2. So, we’re left with d3d4 = d1d2d3d4 | a2 as claimed.

For the explicit computations, first note the hint is true, for ifm is not squarefree, then it is divisible by p2 for some prime p.
Then either m = p2 is a square, or else m/p2 has a prime factor q. If r is the smallest prime divisor of m, then m ≥ p2q ≥ r3,
so r ≤ 3

√
m.

Let γ = 44a+ 55. We’re considering −20 < a < 0, so γ < 55 = 3125 and

γ > 55
(
−20

44

55
+ 1

)
= 55

(
−20

213

105
+ 1

)
= 55

(
−20

8192

100000
+ 1

)
> 55

(
−20

10000

100000
+ 1

)
= −55

So, we only need to consider primes p with p3 < 55. Since 55 = 3195 < 4096 = 212 = 163, we only need to consider
p = 2, 3, 5, 7, 11, 13. Clearly 44a+ 55 isn’t a multiple of either 2 or 52, so we only consider p = 3, 7, 11, 13.

We’ll compute the cases directly. When a = −2:

44a+ 55 = 3125− 512 = 2613 = 3 · 13 · 67

which is clearly squarefree.
When a = −3,

44a+ 55 = 3125− 768 = 2357

This isn’t divisible by either 3 or 11 (considering the sum and alternating sum of the digits). If 7 | 2357, then 7 | 2350 = 10·5·47,
but clearly it doesn’t divide any of these factors. Similarly, if 13 | 2357 then 13 | 2370 = 10 · 237, so 13 | 237. But then
13 | 250 = 2 · 53, which it doesn’t. We’re done if γ is not a square, but γ ≡ 2 (mod 3), so it cannot be a square. So, in this case
γ is squarefree.
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When a = −6,
44a+ 55 = 3125− 6 · 256 = 1589 = 7 · 227

and 227 is prime so γ is squarefree.
When a = −7,

44a+ 55 ≡ a+ 2 ≡ 1 (mod 3)

44a+ 55 ≡ (−2)5 ≡ −32 ≡ 3 (mod 7)

44a+ 55 ≡ 162 · 4 + 252 · 5 ≡ 52 · 4 + 32 · 5 ≡ 3 · 4 + 9 · 5 ≡ 1 + 1 ≡ 2 (mod 11)

44a+ 55 ≡ 162 · 6 + 252 · 5 ≡ 9 · 6 + 5 ≡ 7 (mod 13)

So it isn’t divisible by any of these primes and isn’t a square since 3 is a quadratic nonresidue mod 7.
When a = −10,

44a+ 55 = 3125− 2560 = 565 = 5 · 113

which is again clearly squarefree.
When a = −11,

44a+ 55 = 565− 256 = 309 = 3 · 103

which is squarefree.
When a = −13,

44a+ 55 = 309− 512 = −203 = −7 · 29

which is squarefree.
When a = −15,

44a+ 55 = −203− 512 = −715 = −5 · 143 = −5 · 11 · 13

which is squarefree.

Ignoring the hint, we have:

N(1 + α) =
∏
i

(1 + αi) = (−1)5
∏
i

(−1− αi) = −f(−1) = −((−1)5 + a(−1) + a) = 1

so 1 + α is a unit.

Exercise (2.44).

Proof. As above, we have:

disc(α) = N(f ′(α)) = N(5α4 + 4aα3) = N(α)3N(5α+ 4a) = (−b)3N(5α+ 4a)

and we compute the second term by considering the conjugates:

N(5α+ 4a) =
∏
i

(5αi + 4a)

= (−5)5
∏
i

(−4a/5− αi)

= −55f(−4a/5)

= −55
(
−45a5

55
+ a

44a4

54
+ b

)
= 45a5 − 445a5 − 55b

= 44(4− 5)a5 − 55b

= −(44a5 + 55b)

So, overall,
disc(α) = b3(44a5 + 55b)
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As before, we have
b3(44a5 + 55b) = (d1d2d3d4)

2 disc(R)

where d1 | d2 | d3 | d4. Suppose p is a prime divisor of d3. Then p | d4, so p4 | (d3d4)2 | b3(44a5+55b). Since b and 44a5+55b
are squarefree, this is only possible if each is divisible by p (and not p2, of course). But then p | 44a5 | (2a)8, so p | 2a, which
contradicts gcd(b, 2a) = 1. So, such a prime cannot exist, i.e. d3 = 1, and since d1 | d2 | d3, they are all equal to 1.

Finally, we have d24 | b3(44a5+55b). If p | d4, then p2 divides this expression, and so p divides both b and 44a5+55b. Further,
p2 ∤ d4 in this case, else we would again be in the above case where b3(44a + 55b) is divisible by p4. So, vp(d4) = 1 = vp(b),
whence d4 | b.

When a = −2 and b = 5, we get

disc(α) = 53(44(−2)5 + 55(5)) = 53(15625− 8192) = 53 · 7433

and 7433 is squarefree since it isn’t divisible by any of 2, 3, 5, 7, 11, 13, 17, or 19, while 7433 < 8000 = 203, and 7433 ≡ 2
(mod 3) so it isn’t a perfect square.

For the case a = b, disc(α) = a4((4a)4 + 55) = (d1d2d3d4)
2 disc(R). If a and (4a)4 + 55 are squarefree, then d62 |

a4((4a)4 + 55), implies that d2 = 1, which gives d1 = 1. So, we have (d3d4)2 | a4((4a)4 + 55). For each prime divisor p of
d3d4, we have 2vp(d3d4) ≤ 4vp(a) + vp((4a)

4 + 55) ≤ 4vp(a) + 1. Since these are integers, this gives 2vp(d3d4) ≤ 4vp(a),
i.e. vp(d3d4) ≤ vp(a

2), and since this is true for all primes, we get d3d4 | a2.
Similarly, when a = −b, disc(α) = a4((4a)4 − 55) = (d1d2d3d4)

2 disc(R). So, if a and (4a)4 − 55 are squarefree, then
d62 | a4((4a)4 − 55), so d2 = 1 =⇒ d1 = 1. Then d3d4 | a2 as in the previous case.

Finally, in the case a = b, we have a(α4 + 1) = −α5. Taking norms gives:

N(α4 + 1) =
N(−α5)

N(a)
=

(−1)5N(α)5

a5
=

−(−a)5

a5
= 1

so α4 + 1 is a unit. In the case a = −b, we have a(α4 − 1) = −α5, so

N(α4 − 1) =
N(−α5)

N(a)
=

(−1)5(−a)5

a5
= 1

so α4 − 1 is a unit.

Exercise (2.45).

Proof. We repeat the process in the past few problems. If α is a root of an irreducible polynomial f(x) = xn + ax + b for
a, b ∈ Z, then

disc(α) = (−1)(n
2−n)/2N(f ′(α))

= (−1)(n
2−n)/2N(nαn−1 + a)

= (−1)(n
2−n)/2N(nαn + aα)

N(α)

= (−1)(n
2−n)/2N(n(−aα− b) + aα)

(−1)nb

= (−1)(n
2+n)/2N(a(1− n)α− nb)

b

Then, letting α1, . . . , αn denote the conjugates of α, we have

f(x) =
∏
i

(x− αi)
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and so

N(a(1− n)α− nb) =
∏
i

(a(1− n)αi − nb)

= [a(n− 1)]n
∏
i

(
nb

a(1− n)
− αi

)
= [a(n− 1)]nf

(
nb

a(1− n)

)
= an(n− 1)n

(
nnbn

an(1− n)n
+ a

nb

a(1− n)
+ b

)
= (−nb)n + (n− 1)n−1anb(n− 1− n)

= (−nb)n − (n− 1)n−1anb

So, overall, we get:

disc(α) = (−1)(n
2+n)/2 (−nb)n − (n− 1)n−1anb

b
= (−1)(n

2−n)/2
(
nnbn−1 − (−1)n(n− 1)n−1an

)
Note that this agrees with our previous cases: when n = 3 (see exercise 28), we get

disc(α) = (−1)3(33b2 − (−1)322a3) = −(27b2 + 4a3)

and when n = 5 (exercise 43):
disc(α) = (−1)10(55b4 − (−1)544a5) = 55b4 + 44a5

Similarly, suppose now that α is a root of the irreducible polynomial f(x) = xn + axn−1 + b with a, b ∈ Z. Then, writing
the roots of f as α1, . . . , αn, we get:

disc(α) = (−1)(n
2−n)/2N(f ′(α))

= (−1)(n
2−n)/2N(nαn−1 + (n− 1)aαn−2)

= (−1)(n
2−n)/2N(α)n−2N(nα+ (n− 1)a)

= (−1)(n
2−n)/2((−1)nb)n−2

∏
i

(nαi + (n− 1)a)

= (−1)(n
2−n)/2(−1)n

2−2nbn−2(−n)n
∏
i

(
1− n

n
a− αi

)
= (−1)(−n2+n)/2bn−2nnf

(
1− n

n
a

)
= (−1)(−n2+n)/2bn−2nn

(
(1− n)n

nn
an + a

(1− n)n−1

nn−1
an−1 + b

)
= (−1)(−n2+n)/2bn−2((1− n)n−1an(1− n+ n) + bnn)

= (−1)(n
2−n)/2bn−2((−1)n−1(n− 1)n−1an + nnb)

This agrees with the previous exercise when n = 5:

disc(α) = (−1)10b3((−1)444a5 + 55b) = b3(44a5 + 55b)

Exercise (2.46).

Proof. Since f ′(r) = 0, we have f ′(x) = (x − r)g(x) for some g ∈ Q[x]. Since r ∈ Z, f ′ and x − r are in Z[x], so by Gauss’
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Lemma, g ∈ Z[x] as well. Then, if αi are the roots of f , then:

disc(α) = ±N(f ′(α))

= ±N((α− r)g(α))

= ±N(α− r)N(g(α))

= ±N(g(α))
∏
i

(αi − r)

= ±N(g(α))f(r)

Since g has integer coefficients, g(α) is an algebraic integer, so it has integral norm. So, this shows f(r) | disc(α) as claimed.

More generally, suppose f ′(r/s) = 0 for gcd(r, s) = 1. Then we can write:

f ′(x) = (x− r/s)g(x)

for some g ∈ Q[x]. There is a rational number a/b such that ag/b is a primitive polynomial (integral polynomial with no
common divisor of the coefficients). So, we get:

asf ′(x)/b = (sx− r)ag(x)/b

Then sx− r and ag/b are primitive, so by Gauss’ Lemma, we get that asf ′/b is primitive. But f ′ ∈ Z[x], so a divides all of the
coefficients of asf ′/b. Since it is primitive, this forces a = 1.

Similarly, s/ gcd(s, b) divides all of the coefficients of sf ′/b, which, by primitivity, gives s/ gcd(s, b) = 1, i.e. s = gcd(s, b),
so s | b. I.e., b = su for some u ∈ Z.

So, g/b ∈ Z[x], and so does ug/b. That is, we are able to factorize

f ′(x) = (x− r/s)g(x) = (sx− r)g(x)/s = (sx− r)ug(x)/(su) = (sx− r)ug(x)/b

as a product of (sx− r) and an integer polynomial. Rename ug/b as g in the sequel, so we have f ′(x) = (sx− r)g(x).
Now, we proceed in the same way as before:

disc(α) = ±N(f ′(α))

= ±N((sα− r)g(α))

= ±N(g(α))
∏
i

(sαi − r)

= ±N(g(α))snf(r/s)

Since snf(r/s) is an integer (the denominators clearly cancel), this gives snf(r/s) | disc(α) in this case.

We have that g(x)f ′(x) = h(x) + f(x)k(x) for some polynomial k ∈ Z[x]. Let α1, . . . , αn be the roots of f ; let a1, . . . , ar
be the roots of g; let b1, . . . , bs be the roots of h; let G be the leading coefficient of g; and let H be the leading coefficient of h.
By assumption, aj , bj ∈ Q for all j. Then,

disc(α) = (−1)(n
2−n)/2N(f ′(α))

= (−1)(n
2−n)/2N(h(α) + f(α)k(α))

N(g(α))

= (−1)(n
2−n)/2N(h(α))

N(g(α))

= (−1)(n
2−n)/2

∏
i h(αi)∏
i g(αi)

= (−1)(n
2−n)/2

∏
i H
∏s

j=1(αi − bj)∏
i G
∏r

j=1(αi − aj)

= (−1)(n
2−n)/2

Hn
∏s

j=1

∏
i(αi − bj)

Gn
∏r

j=1

∏
i(αi − aj)

= (−1)(n
2−n)/2

Hn
∏s

j=1(−1)nf(bj)

Gn
∏r

j=1(−1)nf(aj)

= (−1)(n
2−n)/2+n(s+r)

Hn
∏s

j=1 f(bj)

Gn
∏r

j=1 f(aj)
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I.e., up to a constant, we only need the product of evaluating f at the roots of h over the roots of g to find the discriminant.

Exercise (2.47).

Proof. Per the previous exercise, we should write f ′ as a rational function in Z[x]/f(x). We have

xf ′(x) = x(5x4 − 2x) = 5x5 − 2x2 ≡ 5(x2 − 15)− 2x2 = 3x2 − 75 = 3(x− 5)(x+ 5) (mod f(x))

So, from the previous exercise,

disc(α) = (−1)10+15 3
5f(5)f(−5)

15f(0)

= −35(55 − 52 + 15)(−55 − 52 + 15)

15

= −34

5
(−10 + 55)(−10− 55)

= −34

5
(100− 510)

= 34(59 − 20)

Exercise (2.48).

Proof.

(a) Let g(x) = f(x− a/3). I.e.,

g(x) = (x− a/3)3 + a(x− a/3)2 + b(x− a/3) + c

= x3 + (3(−a/3) + a)x2 + (3(−a/3)2 − 2a(a/3) + b)x+ f(−a/3)

= x3 − (d2/3)x+ f(−a/3)

Now, let α1, α2, α3 denote the roots of f . Then g is also irreducible over Q with roots αi + a/3. Then,

disc(α) =
∏

1≤r<s≤3

(αr − αs)
2

=
∏

1≤r<s≤3

[(αr + a/3)− (αs + a/3)]2

= disc(α+ a/3)

= −N(g′(α+ a/3))

So, we compute g′:
g′(x) = 3x2 − d2/3

I.e.

disc(α) = −N(g′(α+ a/3))

= −N(3(α+ a/3)2 − d2/3)

= −
3∏

i=1

(
3
(
αi +

a

3

)2
− d2

3

)

= −27

3∏
i=1

(
αi +

a

3
− d

3

)(
αi +

a

3
+

d

3

)

= −27

3∏
i=1

(
−a+ d

3
− αi

)(
−a− d

3
− αi

)
= −27f

(
−a+ d

3

)
f

(
−a− d

3

)
as claimed.
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(b) The same proof above still works for d ̸∈ Q. Namely, the only time we use d (as opposed to d2) is in the final step, which
is only a computation and does not rely on d ∈ Q.

(c) We consider xg′(x) modulo g(x):

xg′(x) = 3x3 − d2

3
x ≡ 3

(
d2

3
x− f(−a/3)

)
− d2

3
x =

2d2

3
x− 3f

(
−a

3

)
(mod g(x))

Note that the RHS has root 9f(−a/3)
2d2 . So, by exercise (2.46):

disc(α) = (−1)9

(
2d2

3

)3
g
(

9f(−a/3)
2d2

)
g(0)

= −8(a2 − 3b)3

27f(−a/3)
f

(
9

2(a2 − 3b)
(−a3/27 + a3/9− ab/3 + c)− a

3

)
=

8(3b− a2)3

27f(−a/3)
f

(
2a3/3− 3ab+ 9c− a(2a2 − 6b)/3

2a2 − 6b

)
=

8(3b− a2)3

27f(−a/3)
f

(
2a3/3− 3ab+ 9c− 2a3/3 + 2ab

2a2 − 6b

)
=

8(3b− a2)3

27f(−a/3)
f

(
9c− ab

2a2 − 6b

)
as claimed.

(d) Finally, for the first explicit example, we have a = −6, b = 9, and c = 3. So,

f(−a/3) = f(2) = 8− 6 · 4 + 9 · 2 + 3 = 5

and
a2 − 3b = (−6)2 − 3 · 9 = 9

so
f

(
9c− ab

2a2 − 6b

)
= f

(
9 · 3− (−6) · 9

2 · 9

)
= f(9/2) = 729/8− 6(81/4) + 9(9/2) + 3 =

105

8

giving

disc(α) =
8(−9)3(105/8)

27(5)
= −347 = −567

Similarly, for the second, we have a, b, c = −6,−9, 3, respectively, so a2 − 3b = 36 + 27 = 63 and:

disc(α) =
8(−63)3

27f(2)
f

(
27− 54

2(63)

)
= − 233373

8− 24− 18 + 3
f(−3/14)

= −233373

−31

(
− 27

143
− 6

9

142
+ 9

3

14
+ 3

)
=

34

31
(−9− 18 · 14 + 9 · 142 + 143)

= 34137 = 11097
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