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Exercise (3.1).

Proof. Let R be a (unital, commutative) ring. Suppose first that every ideal is finitely generated. Then, consider an ascending
sequence of ideals:

I1 ⊆ I2 ⊆ I3 ⊆ · · ·

Then, let

I =

∞⋃
n=1

In

First, note that I is an ideal. Indeed, if x, y ∈ I , then there are n,m with x ∈ In and y ∈ Im. Then x, y ∈ Imax{n,m}, so
x + y ∈ Imax{n,m} ⊆ I . Further, if r ∈ R is arbitrary, then rx ∈ In ⊆ I . Thus, by assumption, I = (a1, . . . , an) for some
elements ai ∈ R. Then, for each i, ai ∈ Imi

for some indicesmi, and then ai ∈ Im ⊆ I form = max{m1, . . . ,mn}. But then
I = Im, and so the chain stabilizes: I = Im = Im+1 = Im+2 = · · · .

Second, assume that ascending chains stabilize. Let S be a nonempty set of ideals of R. Assume, for contradiction, that S
has no maximal element. Then, we can inductively choose a sequence of ideals as follows: let I1 ∈ S be arbitrary. Then, since
I1 is not a maximal element of S, there is an ideal I2 ∈ S with I1 ⊊ I2. Continue in this way: given In ∈ S, it is not maximal,
so choose In+1 ∈ S with In ⊊ In+1. But then we’ve constructed an ascending chain of ideals of R that does not stabilize,
contrary to assumption.

Finally, suppose every nonempty collection of ideals has amaximal element. Let I ⊆ R be an ideal, and letS = {(a1, . . . , an) |
n ∈ N, ai ∈ I} be the collection of finitely generated ideals contained in I . By assumption, this has a maximal element
(a1, . . . , an). But if I ̸= (a1, . . . , an), then there is some a ∈ I \ (a1, . . . , an), giving that (a1, . . . , an, a) ∈ S strictly contains
(a1, . . . , an). This would contradict maximality, and so we conclude I = (a1, . . . , an) is finitely generated.

Exercise (3.2).

Proof. Let R be a domain with |R| finite, and let α ∈ R be nonzero. Consider the map N → R given by n 7→ αn. Since the
codomain is finite, this map cannot be injective. So, there exist distinct n,m ∈ N with αn = αm. WLOG, n < m, whence we
have

0 = αn(αn−m − 1)

But since R is a domain, we either get α = 0 or αn−m = 1. The former is not true by assumption, and so αn−m = 1. So α is
invertible and R is a field.

Exercise (3.3).

Proof. Let G be generated (freely) by e1, . . . , en ∈ G. Then G/mG is generated by the images ei + mG. Each has order m
since mei ∈ mG, and there are no further relations. For if

n∑
i=1

ai(ei +mG) = mG

then
∑

aiei ∈ mG, and since these generate freely, each ai must be a multiple ofm. So, the sum is already zero. I.e. G/mG is
isomorphic to (Z/mZ)n as claimed.

Exercise (3.4).

Proof. As hinted, if α ∈ I is nonzero, then αR ⊆ I ⊆ R, and so I is an abelian group contained in and containing a free abelian
group of rank n. So I is also a free abelian group of rank n.

Exercise (3.5).

Proof. The two remaining claims in the proof of [Lemma 2, Theorem 15] are that γ ∈ K \ R and γA ⊆ R. The first is clear,
for if γ ∈ R, then b = aγ ∈ (a), contrary to assumption. For the second, note that b ∈ P2 · · ·Pr and A ⊆ P = P1. Hence
bA ⊆ P1 · · ·Pr ⊆ aR. So, γA ⊆ R as claimed.

Exercise (3.6).



Proof. The only two gaps in the proof are:

• A is an ideal since it is clearly an R-submodule ofK contained in R.

• γJ ⊆ J , since for β ∈ J , we have γβ ∈ γJ ⊆ R and

γβI ⊆ γIJ = γαA ⊆ αR

so that γβ ∈ J by definition.

Exercise (3.7).

Proof. If I + J = R, then there is a ∈ I , b ∈ J with a+ b = 1. Then, by the binomial theorem,

1 = 1n+m = (a+ b)n+m =

n+m∑
i=0

(
n+m

i

)
aibn+m−i

Each summand is either divisible by am and so is in Im or else is divisible by bn and so is in Jn. So we have Im + Jn = R as
claimed.

Exercise (3.8).

Proof.

(a) Suppose, for contradiction, that (2, x) = (f) for some f ∈ Z[x]. Then 2 = fg for some g ∈ Z[x], so that f has degree
zero, i.e. f ∈ Z. Then f = ±1 or f = ±2. We cannot have either of the first two, since then (f) = Z[x], but

Z[x]/(f) = Z[x]/(2, x) ∼= F2

is nontrivial. But we also cannot have f = ±2 because 2 ∤ x in Z[x].

(b) As usual, we refer to the gcd of the coefficients of a polynomial as the content of that polynomial, and refer to any
polynomial with content 1 as primitive. As suggested, we first show that the product of primitive polynomials is primitive.
Indeed, suppose that f =

∑
i aix

i and g =
∑

j bjx
j are both primitive. Now, let p be a prime, and note that there is

some first coefficient of f that is not divisible by p, say an and similarly for g, i.e. bm. But then the coefficient of xn+m

in fg is
n+m∑
i=0

aibn+m−i

and every term in this sum is divisible by p except the term anbm, since it involves ai for i < n or bj for j < m. So, this
coefficient is not divisible by p. I.e. fg is primitive.
Now, for the general case, ifm is the content of f and n is the content of g, then 1 is the content of (f/m)(g/n), and so
mn is the content of fg = mn(f/m)(g/n).

(c) Contrapositively, suppose f ∈ Z[x] is reducible over Q, so that f = gh for nonconstant polynomials g, h ∈ Q[x]. Then,
we can clear denominators: for some a, b ∈ Z we get ag, bh ∈ Z[x]. So,

abf = (ag)(bh)

i.e. this multiple of f is reducible in Z[x]. Let t be the smallest positive integer such that tf is reducible in Z[x]. If t ̸= 1,
then let p be a prime divisor of t, and note that if tf = g′h′, then p divides the content of tf , so it divides the product of
the contents of g′ and h′. So, it divides one of these, i.e. WLOG p divides the content of g′, whence g′/p ∈ Z[x]. But then
(t/p)f = (g′/p)h′, contradicting the minimality of t. So we must have t = 1 so that tf = f is reducible in Z[x].

(d) Since f is irreducible in Z[x], we’ve shown that f is irreducible in Q[x]. So, f | gh implies that f | g or f | h in Q[x].
WLOG, suppose f | g, so that g = fq for some q ∈ Q[x]. As above, by clearing denominators, we can write ag = f(aq)
for some a ∈ Z such that aq ∈ Z[x]. Then a divides the content of ag, which equals the content of aq, since f is primitive.
So q = (aq)/a ∈ Z[x], so that f | g in Z[x].
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(e) To see that Z[x] is a UFD, we will show that every element can be written as a product of irreducibles and that all
irreducibles are prime. The former is immediate, since this is true for any Noetherian ring (Z[x] is Noetherian since Z
is, by an application of the Hilbert Basis Theorem). The latter is essentially what we’ve shown. Suppose f is irreducible
and primitive. Then the above shows that if f | gh then f | g or f | h, so that f is prime. If f is not primitive, then
f = d(f/d), where d is the content of f . But since f is irreducible, we must have that d is a prime integer and that f/d
is a unit, i.e. it is ±1, so that f itself is ±p for a prime p ∈ Z. In this case, f = p is also prime in Z[x]. So, in either case,
we’ve shown that any irreducible is prime, and so Z[x] is a UFD.

Exercise (3.9).

Proof.

(a) Considering the union of all prime divisors of I and J in R, we can write

I = P a1
1 · · ·P an

n J = P b1
1 · · ·P bn

n

for distinct primes Pi and ai, bi ≥ 0. Then, each prime factors in S, so that

PiS = Qci1
i1 · · ·Qciti

iti

where each ciu > 0 and as u varies, Qiu enumerates the distinct primes lying over Pi. Further, for i ̸= j and any valid
u, v, Qiu ̸= Qjv since they lie over distinct primes. Overall, this gives:

IS =

n∏
i=1

ti∏
u=1

Qaiciu
iu

and

JS =

n∏
i=1

ti∏
u=1

Qbiciu
iu

Since IS | JS and these are all distinct primes, we must have aiciu ≤ biciu for each i, u. Since each ciu is positive, this
gives ai ≤ bi for each i, and so I | J .

(b) As suggested, let J = IS ∩ R. Then, if x ∈ I ⊆ R, then x ∈ IS also, so x ∈ J , i.e. I ⊆ J , so J | I . But also clearly
JS ⊆ IS, so IS | JS, and the previous gives I | J . Thus I = J , i.e. I = IS ∩R.

(c) I claim the following is necessary and sufficient for I = (I ∩ R)S: for each prime P dividing I ∩ R, there is an n such
that for each prime Q of S lying over P , the exponent of Q in the factorization of I is precisely ne(Q|P ). Indeed, this is
sufficient, for if this holds, then

I ∩R = Pn1
1 · · ·Pnk

k

and then for each prime Q lying over Pi, the exponent of Q in the factorization of (I ∩ R)S is nie(Q|Pi), which by
assumption is the exponent of Q in the factorization of I . Conversely, suppose I = (I ∩R)S. Then, if Pn divides I ∩R
exactly (i.e. Pn+1 does not divide I ∩R), then writing

P = Qe1
1 · · ·Qet

t

we get that Qnei
i exactly divides (I ∩R)S, and so the exponent of Qi in I is exactly nei = ne(Qi|P ) as claimed.

Exercise (3.10).

Proof. Let R ⊆ S ⊆ T be number rings and let U ⊆ T be prime. Let Q = S ∩U and P = R ∩Q be the corresponding primes
lying under. Then QT can be written as a product where one of the factors is Ue(U |Q), and PS can similarly be written as a
product with one factor equal toQe(Q|P ). Substituting this in gives that PT = (PS)T has a factor ofQe(Q|P )T = (QT )e(Q|P ),
which has a factor of

(Ue(U |Q))e(Q|P ) = Ue(U |Q)e(Q|P )

and no higher power, so e(U |P ) = e(U |Q)e(Q|P ).
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Second, note that the inclusions R ↪→ S ↪→ T composed with the quotient T → T/U induces ring homomorphisms:

R/P → S/Q → T/U

These are nontrivial morphisms and each ring is a field, so they are all injections. I.e. this is a tower of field extensions and the
inertial degree is the degree of the extension, so that f(U |P ) = [T/U : R/P ] = [T/U : S/Q][S/Q : R/P ] = f(U |Q)f(Q|P ).
So, indeed both e, f are multiplicative.

Exercise (3.11).

Proof. Let α ∈ I . Then αR ⊆ I , so I | αR, so there is some nonzero ideal J with αR = IJ . Then

∥I∥∥J∥ = ∥IJ∥ = ∥αR∥ = NK(α)

so that ∥I∥ | NK(α) as claimed. If these are equal, then [R : J ] = ∥J∥ = 1, so J = R. Then αR = IJ = IR = I as claimed.
Conversely, if αR = I , then clearly the two ideals have the same norm.

Exercise (3.12).

Proof. We show both containments. First, note that

(5, α+ 2)(5, α2 + 3α− 1) = (25, 5α+ 10, 5α2 + 15α− 5, 5α2 + 5α)

Clearly this is contained in 5S since each generator is. Conversely, this ideal contains

(5α+ 10)(2α+ 2)− 2(5α2 + 15α− 5)− 25 = 5

and so it contains 5S. So the two are equal.

Consider the map Z[x] → F5[x]/(x
2 + 3x − 1) (that maps x and 1 to themselves). The kernel clearly contains 5 and

x2 + 3x− 1. If f is in the kernel, then by polynomial division we can write f(x) = q(x)(x2 + 3x− 1) + r(x) for q, r ∈ Z[x]
and r of degree at most 1 since x2 + 3x − 1 is monic. Then r is in the kernel, and factorizing it (since Z[x] is a UFD), we find
that each prime factor of r is nonzero in the image except possibly 5. Since r is in the kernel, it must be divisible by 5, i.e.
f ∈ (x2 + 3x− 1, 5), so this is precisely the kernel. I.e. we have an isomorphism:

Z[x]/(5, x2 + 3x− 1) ∼= F5[x]/(x
2 + 3x− 1)

as claimed.

Consider the map Z[x] → S/(5, α2 + 3α − 1) that maps x to α. Then clearly 5 is in the kernel and x2 + 3x − 1 7→
α2 + 3α− 1 = 0 in the latter ring. So, this factors as a map

Z[x]/(5, x2 + 3x− 1) → S/(5, α2 + 3α− 1)

as claimed.

So, S/(5, α2+3α− 1) is (isomorphic to) a quotient of F5[x]/(x
2+3x− 1). But x2+3x− 1 is irreducible in this ring since

it has no roots in F5. So F5[x]/(x
2 + 3x− 1) is a field and so the only ideals are the zero and improper ideals, hence the only

quotients are itself and the zero ring. So, we get that (5, α2 + 3α− 1) = S or S/(α2 + 3α− 1) ∼= F25.

Finally, from the first part, if (5, α2 + 3α − 1) = S, then 5S = (5, α + 2)S. But then α + 2 ∈ 5S, so that (α + 2)/5 ∈ S,
which isn’t true by unique representation of elements in Q[α].

Exercise (3.13).

Proof. As with the previous, we define I and compute:

I = (23, α− 10)2(23, α− 3)

= (232, 23(α− 10), α2 − 20α+ 100)(23, α− 3)

= (233, 232(α− 10), 23(α2 − 20α+ 100), 232(α− 3), 23(α2 − 13α+ 30), α3 − 23α2 + 160α− 300)

= (233, 232(α− 10), 23(α2 − 20α+ 100), 232(α− 3), 23(α2 − 13α+ 30),−23α2 + 161α− 299)

= (233, 232(α− 10), 23(α2 − 20α+ 100), 232(α− 3), 23(α2 − 13α+ 30),−23(α2 − 7α+ 13))

4



This is contained in 23S since each generator is a multiple of 23. Further, we have:

det

 1 1 1
−20 −13 −7
100 30 13

 = 7 · 43

which is nonzero in F23. So, by linear algebra there are a, b, c ∈ Z with

a(x2 − 20x+ 100) + b(x2 − 13x+ 30) + c(x2 − 7x+ 13) = 23r(x) + 1

for some polynomial r ∈ Z[x]. Thus, 232r(x) + 23 ∈ I . We also have

232(α− 3)− 232(α− 10) = 232 · 7 ∈ I

Since 23 and 7 are coprime (in Z), there are u, v ∈ Z with 23u+ 7v = 1. Then, 233 ∈ I , so

233u+ (232 · 7)v = 232(23u+ 7v) = 232 ∈ I

as well. Since 232 ∈ I and 232r + 23 ∈ I , we finally conclude 23 ∈ I , as claimed. Thus finally we get 23S = I .

We have (23, α−10)+(23, α−3) = (23, α−10, α−3), so if we can show the latter is S, then they will indeed be coprime
ideals. But the latter ideal contains

23u+ (α− 3)v − (α− 10)v = 23u+ 7v = 1

and so it is S.

Exercise (3.14).

Proof. First, note that G acts on the set of primes lying over P . We’ve shown that this action is transitive; for a prime Q over
P , let GQ denote the stabilizer of Q. Thus, if Q,Q′ are two primes lying over P , then there is some α ∈ G with α(Q) = Q′,
and so αGQ is the set of automorphisms that map Q to Q′. But αGQ and GQ have the same size, as desired. Thus, if there are
r primes lying over P , then re(Q|P )f(Q|P ) = n = r|GQ|, so |GQ| = e(Q|P )f(Q|P ) as claimed.

Computing directly, we have, for a fixed Q over P :

P f(Q|P ) = R ∩ P f(Q|P )S

= R ∩
∏

Q′∈SpecS
Q⊇P

(Q′)e(Q
′|P )f(Q|P )

= R ∩
∏
σ∈G

σ(Q)

= NL
K(Q)

since f(Q|P ) = f(Q′|P ) for any Q′ lying over P .

Note that if σ is an automorphism of L/K and I, J are ideals of S, then σ(IJ) = σ(I)σ(J). So, let I be a nonzero ideal of
S, so we can factorize it as I =

∏n
i=1 Qi, where each Qi is a prime lying over Pi = Qi ∩R. So,

∏
σ∈G

σ(I) =
∏
σ∈G

n∏
i=1

σ(Qi) =

n∏
i=1

P
f(Qi|Pi)
i S

so the product is JS for J =
∏n

i=1 P
f(Qi|Pi)
i . Then,

J = R ∩ JS = R ∩
∏
σ∈G

σ(I) = NL
K(I)

and so ∏
σ∈G

σ(I) = JS = NL
K(I)S

as claimed.
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Directly, we have:

NL
K(IJ) = R ∩NL

K(IJ)S

= R ∩
∏
σ∈G

σ(IJ)

= R ∩
∏
σ∈G

σ(I)σ(J)

= R ∩

[(∏
σ∈G

σ(I)

)(∏
σ∈G

σ(J)

)]

=

[(
R ∩

∏
σ∈G

σ(I)

)(
R ∩

∏
σ∈G

σ(J)

)]
= NL

K(I)NL
K(J)

as desired.

Again, we do this directly:

NL
K(αS) = R ∩

∏
σ∈G

σ(αS) = R ∩

(∏
σ∈G

σ(α)

)
S = R ∩NL

K(α)S = NL
K(α)R

as claimed.

Exercise (3.15).

Proof. Note that it suffices to show the claim for primes, since both sides are multiplicative. So, let R ⊆ S ⊆ T be the rings of
integers inK,L,M , respectively, let U ∈ SpecT , let Q = U ∩ S, and let P = Q ∩R. Then,

NL
K(NM

L (U)) = NL
K(Qf(U |Q)) = NL

K(Q)f(U |Q) = (P f(Q|P ))f(U |Q) = P f(U |Q)f(Q|P ) = P f(U |P ) = NM
K (U)

as claimed.

As suggested, now letM be the normal closure of L/K . Then for α ∈ S, and n = [M : L], NM
L (α) = αn, so

NL
K(αnS) = NL

K(NM
L (αT )) = NM

K (αT ) = NM
K (α)R = [NL

K(α)]nR

using the result of the previous problem and the fact that M/L and M/K are normal. Since the norm is multiplicative and
prime factorizations are unique, NL

K(αS) = NL
K(α)R as claimed.

As suggested, note that if P ∈ SpecS, then P lies over a rational prime p ∈ Z, and

NL
Q (P ) = (pZ)f(P |p) = pf(P |p)Z = |S/P |Z = ∥P∥Z

as claimed. Further, both sides are multiplicative, so this is now true for all ideals I of S.

Exercise (3.16).

Proof. We have a map of ideals I 7→ NL
K(I). To show that it induces a map of class groups, we show that it maps equivalent

elements to equivalent elements. So, let A,B be nonzero ideals of S with nonzero elements a, b ∈ S with aA = bB. Then,

NL
K(a)NL

K(A) = NL
K(aA) = NL

K(bB) = NL
K(b)NL

K(B)

and so NL
K(A) and NL

K(B) are equivalent.

For an ideal I , let [I] denote the class of I in the class group. Then:

[R] = NL
K([S]) = NL

K([Q]dQ) = [NL
K(Q)dQ ] = [P f(Q|P )dQ ]

so that dP | f(Q|P )dQ as claimed.
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Exercise (3.17).

Proof. Throughout, let S = Z[ω].

First, we have that f(Q|2) is the multiplicative order of 2 mod 23, which is 11. Then, f(Q|P )f(P |2) = f(Q|2) = 11, and
f(P |2) ≤ [K : Q] = 2, so we must have f(P |2) = 1 and f(Q|P ) = 11. Then, since [L : K] = [L : Q]/[K : Q] = 22/2 = 11,
we get that PS = Q, since the sum of e · f over all primes lying over P gives 11. I.e. Q = (2R+ θR)S = 2S + θS as claimed.

We have:
P 3 = (8, 4θ, 2θ2, θ3) = (8, 4θ, 2θ − 12, 5θ + 6)

since θ2 = θ − 6. This equation also gives:

(θ − 2)2 = θ2 − 4θ + 4 = −3θ − 2 = −3(θ − 2)− 8

So, θ − 2 divides 8. Then it also divides 4(θ − 2) + 8 = 4θ, 2(θ − 2) − 8 = 2θ − 12, and 5(θ − 2) + 16 = 5θ + 6. Thus
P 3 ⊆ (θ − 2).

Conversely, θ − 2 = (5θ + 6)− (4θ)− (8), so θ − 2 ∈ P 3. Thus, the two ideals are equal, as claimed.
On the other hand, suppose that P is principal, generated by α. Then P 3 = (α3) = (θ − 2), and so

8 = |NK
Q (θ − 2)| = ∥P∥ = |NK

Q (α3)| = |NK
Q (α)|3

and so NK
Q (α) = ±2. But if α = a+ bθ, then its norm is:

(a+ bθ)(a+ b(1− θ)) = a2 + ab+ b2(θ − θ2) = a2 + ab+ 6b2 =
a2 + 11b2 + (a+ b)2

2

So, in order for this to be ±2, we would need a2 + 11b2 + (a+ b)2 = ±4, which must actually be 4. This forces b = 0, else it
would be too large, and so 2a2 = 4, which has no integer solutions. So, P is indeed not principal.

From the previous exercise, 3 = dP | dQf(Q|P ) = 11dQ. So, 3 | dQ and Q is not principal.

Suppose 2 = αβ for some nonunits α, β ∈ S. Then, (α)(β) = 2S = QQ′, whereQ is as above andQ′ = (2, 1−θ) lies over
the other prime P ′ = (2, 1− θ over 2. But then comparing prime factorizations gives that (WLOG)Q = (α), contradicting the
fact that Q is not principal.

Exercise (3.18).

Proof. Let σ1, . . . , σn be the embeddings ofK into C. Then:

disc(rα1, α2, . . . , αn) = det


rσ1(α1) rσ2(α1) · · · rσn(α1)
σ1(α2) σ2(α2) · · · σn(α2)

...
...

. . .
...

σ1(αn) σ2(αn) · · · σn(αn)


2

= r2 det


σ1(α1) σ2(α1) · · · σn(α1)
σ1(α2) σ2(α2) · · · σn(α2)

...
...

. . .
...

σ1(αn) σ2(αn) · · · σn(αn)


2

= r2 disc(α1, . . . , αn)

as claimed.
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Similarly, if β = c2α2 + · · ·+ cnαn:

disc(α1 + β, α2, . . . , αn) = det


σ1(α1 + β) σ2(α1 + β) · · · σn(α1 + β)
σ1(α2) σ2(α2) · · · σn(α2)

...
...

. . .
...

σ1(αn) σ2(αn) · · · σn(αn)


2

=

det


σ1(α1) σ2(α1) · · · σn(α1)
σ1(α2) σ2(α2) · · · σn(α2)

...
...

. . .
...

σ1(αn) σ2(αn) · · · σn(αn)

+

n∑
j=2

cj det


σ1(αj) σ2(αj) · · · σn(αj)
σ1(α2) σ2(α2) · · · σn(α2)

...
...

. . .
...

σ1(αn) σ2(αn) · · · σn(αn)



2

= disc(α1, . . . , αn)

since each term of the sum is zero, as it contains a repeated row.

Exercise (3.19).

Proof. As suggested, let α ∈ R/P and β ∈ S/PS be the images of α, β under the quotient maps. Since S/PS is anR/P -vector
space, the equation αβ = 0 implies that α = 0, so α ∈ P , or else β = 0, so β ∈ PS.

More directly, if αβ ∈ PS and we assume β /∈ P , then since P is maximal, Rβ + P = R, so we can find r ∈ R and p ∈ P
with rβ + p = 1. Then,

α = rαβ + pα ∈ PS

since both summands are.

Note that if βi /∈ P for some i, then γ = 1 works trivially. So, we may assume βi ∈ P for each i, so that αβ ∈ PS. But
α /∈ PS, so the previous argument gives β ∈ P as well. Thus, B = (β, β1, . . . , βn) ⊆ P . By a lemma from the chapter, there
is some γ ∈ K with Bγ ⊆ R but Bγ ̸⊆ P . It is clear that βγ ∈ R and βiγ ∈ R for each i. So, we need only show that it isn’t
the case that βiγ ∈ P for all P . Suppose this is the case; then

α(βγ) =

n∑
i=1

αi(βiγ) ∈ PS

and so the previous result again gives βγ ∈ P . But then Bγ ⊆ P , contrary to assumption. So, βiγ /∈ P for some i.

For the claim, we imitate the proof of theorem 24. Since P is ramified in S, the factorization of PS contains a repeated
prime. Removing that prime, we get an ideal I of S such that I ⊋ PS and such that each prime lying over P divides I . Now,
I contains PS properly, so choose α ∈ I \ PS, and using the fact that the αi form a basis, write:

α = c1α1 + · · ·+ cnαn

for some ci ∈ K . Clearing denominators gives:

αβ = α1β1 + · · ·+ αnβn

for β, βi ∈ R and ci = βi/β. By the previous, after multiplying by an element γ ∈ K if necessary, we may assume that not all
βi ∈ P , and after rearranging we may assume β1 /∈ P . Then, from a previous exercise, we have:

discLK(α, α2, . . . , αn) = discLK(α1β1, α2, . . . , αn) = β2
1 disc

L
K(α1, . . . , αn)

So, to show that discLK(α1, . . . , αn) ∈ P , it suffices to show that d = discLK(α, α2, . . . , αn) ∈ P , since P is prime and β1 /∈ P .
Let M be a normal extension of L/K , fix a prime Q of (the ring of integers of) M , and let σ be a K-embedding of L into

C. Then σ extends to an automorphism ofM , and so σ−1(Q) is also a prime lying over P . So σ−1(Q)∩S is a prime of S lying
over P , which divides (and thus contains) I , and so α ∈ σ−1(Q). This shows that σ(α) ∈ Q for each σ, and so expanding d as
a determinant shows that d ∈ Q as well. But we also have that d ∈ R, and so d ∈ R ∩Q = P as desired.

Exercise (3.20).
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Proof. Let fi = f(Qi|P ), and write Bi = {βi1, . . . , βifi}. Let

s =

r∑
i=1

ei∑
j=1

fi∑
k=1

cijkαijβik

for some cijk ∈ R, and suppose s ∈ P . We’d like to show that each cijk ∈ P . Consider this equation mod Qi. Then since
s ∈ P ⊆ PS ⊆ Qi:

0 ≡ s ≡
fi∑

k=1

ci1kαi1βik = αi1

fi∑
k=1

ci1kβik (mod Qi)

since αhj ∈ Qi for h ̸= i as well as for h = i and j > 1. But αi1 ̸= 0 since it isn’t in Qi, so the sum must be zero. But βik is a
basis for S/Qi over R/P (as k varies), so we conclude ci1k ∈ P for all k. Since i was arbitrary, ci1k ∈ P for all i, k.

Now, suppose we’ve shown cirk ∈ P for all r less than some j > 1. Then we’ll show cijk ∈ P for all i, k. For this, consider
s modulo Qj

i . Then, again s ∈ P ⊆ PS ⊆ Qei
i ⊆ Qj

i , so:

0 ≡ s ≡
fi∑

k=1

cijkαijβik = αij

∑
k=1

cijkβik (mod Qj
i )

Now, αij /∈ Qj
i , so we must have that the sum is in Qi. Again using the fact that βik forms a basis gives cijk ∈ P for all i, k.

By induction cijk ∈ P for all i, j, k, as claimed.

Exercise (3.21).

Proof. As suggested, suppose p | |S/G|, so there is some a ∈ S \G such that pa ∈ G. I.e. we can write:

pa = c1α1 + · · ·+ cnαn

for some ci ∈ Z. But since the αi are independent, we conclude that each ci ∈ pZ, i.e. ci = pdi for some di ∈ Z. Then

a = d1α1 + · · ·+ dnαn ∈ G

contrary to assumption.
Then,

disc(α1, . . . , αn) = disc(G) = |S/G|2 disc(S)

which is the claim, since m = |S/G|2 is not divisible by p.

Now, let M be a normal extension of L/Q and let T be its ring of integers. Extend the K-embeddings of L into C to
automorphisms σ1, . . . , σn of M . From the previous problem, we are considering the elements αijβik . Then disc(αijβik) =
det(A)2, where A is the matrix consisting of elements σt(αijβik). Fix a prime U of T lying over Q1 and let e = e(U |P ) be
the common ramification index; we’d like to compute vU (det(A)), the power of U appearing in the factorization of det(A)T .
Since each automorphism permutes the primes in T , vU (σ(x)) is at least as large as the smallest exponent occuring in the
factorization of xT . Thus:

vU (σt(αijβik)) ≥ vU (σt(αij)) ≥ min

({
e

ei
(j − 1)

}
∪
{

e

eh
N | h ̸= i

})
=

e

ei
(j − 1)

as long as N is large enough.
Thus, when computing the valuation of det(A), we can factor out at least Ue(j−1)/ei from the column corresponding to

αijβik . Thus, we get:

vU (det(A)) ≥
r∑

i=1

ei∑
j=1

fi∑
k=1

e(j − 1)

ei
=

e

2

r∑
i=1

fi(ei − 1)

and so

vp(det(A)2) =
2

e
vU (det(A)) ≥

r∑
i=1

fi(ei − 1) = k

as claimed. The first part of the problem gives that pk | disc(S) as well, since det(A)2/disc(S) is a p-free integer.

Exercise (3.22).
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Proof. Suppose α5 − 2α− 2 = 0. Then

disc(α) = 55(−2)4 + 44(−2)5 = 24 · 3 · 13 · 67

Let R = Z[α] and S be the ring of integers in Q(α). We know R ⊆ S and

disc(R) = disc(S)|S/R|2

So, we have that |S/R| is a power of two, since the square of no other prime divides disc(R). So, finally, we seek the power of
2 dividing disc(S). The previous problem suggests studying the factorization of 2S. But from 2.43, α+ 1 is a unit, and so

(αS)5 = α5S = (2α+ 2)S = 2(α+ 1)S = 2S

So, the factorization of 2S is given by the factorization of αS raised to the fifth. But the exponents in the factorization of 2S
sum to at most n = 5, so this must be the factorization itself. I.e. αS is the unique prime lying over 2 with e = 5 and f = 1.
By the previous exercise, disc(S) is divisible by 2(5−1)·1 = 24.

This completes the computation, showing that |S/R| = 1, i.e. S = R = Z[α].

Now consider the case α5 + 2α4 − 2 = 0; we consider 2.44 now. Then,

disc(α) = −24 · 971

So, as before, we consider 2S. But

(αS)5 = α5S = (−2α4 + 2)S = 2(α4 − 1)S = 2S

since α4 − 1 is a unit. So, this is the factorization, and the previous problem gives that if S is the ring of integers in Q(α), then
disc(S) is divisible by 24 as well. So,

|S/Z[α]|2 = disc(α)/ disc(S) | 971

so that S = Z[α] as before.

Exercise (3.23).

Proof. We establish each of the missing parts. First, 3.2. We have:

(2, 1 +
√
m)2 = (4, 2 + 2

√
m,m+ 1 + 2

√
m)

This is contained in 2R since m is odd. Sincem ≡ 3 (mod 4), we havem = 3 + 4k for some k, so this ideal also contains:

(m+ 1 + 2
√
m)− (2 + 2

√
m)− k(4) = m− 1− 4k = 2

So, it contains 2R and the two are equal.

For 3.3, we have m = 8k + 1 for some k, so:(
2,

1 +
√
m

2

)(
2,

1−
√
m

2

)
=

(
4, 1 +

√
m, 1−

√
m,

1−m

4

)
= (4, 1 +

√
m, 1−

√
m,−2k)

This is again clearly contained in 2R (since (1±
√
m)/2 ∈ R). But it also contains (1+

√
m)+(1−

√
m) = 2, so it contains 2R.

Finally, for 3.5, we have n2 = m+ kp for some k, so

(p, n+
√
m)(p, n−

√
m) = (p2, p(n+

√
m), p(n−

√
m), kp)

which is clearly contained in pR. Conversely, it contains

p(n+
√
m) + p(n−

√
m) = 2np

and so it contains gcd(2np, p2) = p, since p ∤ 2n as p is an odd prime and p ∤ m. So it contains pR.

Exercise (3.24).
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Proof. Equivalently, P is totally ramified in L if there is a unique primeQ of S lying over P with inertial degree 1. Now,Q∩M
is the unique prime ofM lying over P since any prime ofM lying over P must be contained in a prime of S lying over P . We
then also have:

1 = f(Q | P ) = f(Q | Q ∩M)f(Q ∩M | P )

and so f(Q ∩M | P ) = 1. I.e. P is totally ramified in M .

Notice thatK ⊆ L∩L′ ⊆ L, so by the previous part, P is totally ramified in L∩L′. But sinceK ⊆ L∩L′ ⊆ L′, it is also
unramified in L ∩ L′. That is, if U is a prime of L′ lying over Q ∩ L′, then

1 = e(U | P ) = e(U | Q ∩ L′)e(Q ∩ L′ | P )

and so
1 = e(Q ∩ L′ | P ) = [L ∩ L′ : K]

so that L ∩ L′ = K as claimed.

LetR denote the ring of integers inQ[ω], where ω is a primitivemth root of unity. Recall that we computed disc(ω), which
did not require knowing the degree of the extension, and found that it divides a power ofm. Hence, we know that a prime can
only ramify if it divides m.

As suggested, if we first take m = pr , then we’ve shown in 2.34 that p = u(1 − ω)φ(m) for some unit u. Thus, in this
case, pR splits into at least φ(m) factors, i.e. [Q(ω) : Q] ≥ φ(m). But we know that each conjugate of ω must be a root of
(xm − 1)/(xm/p − 1), and so there are at mostm−m/p = pr(1− 1/p) = φ(m) of them. I.e. [Q(ω) : Q] = φ(m) in this case.
We’ve also shown that p is totally ramified in this extension.

For the general case, suppose inductively that for a given m, we’ve shown that [Q(ζt) : Q] = φ(t) for 2 ≤ t < m where
ζt is a primitive tth root of unity. If m is a prime power, we’re done, so assume it is not. Then, let p be a prime dividing m and
factorize m = prn with r > 0 and p ∤ n. Then, we have

ζpr , ζn ∈ Q(ω)

and in fact they generate the full field extension over Q. That is, Q(ω) is the compositum of Q(ζpr ) and Q(ζn). So,

[Q(ω) : Q] =
[Q(ζpr ) : Q][Q(ζn) : Q]

[Q(ζpr ) ∩Q(ζn) : Q]
=

m

[Q(ζpr ) ∩Q(ζn) : Q]

since the subextensions are Galois, and where the numerator comes from the inductive hypothesis. So, it suffices to show that
Q(ζpr ) ∩ Q(ζn) = Q. But this is immediate from the previous part of the problem; we have seen that p is totally ramified in
Q(ζpr ) and unramified in Q(ζn), and so the two fields intersect in Q as desired.

Exercise (3.25).

Proof.

Exercise (3.26).

Proof. Write m = hk2 as in 2.41. Then from that exercise, |R/Z[α]| = d2 | 3k. If p2 ∤ m, then p ∤ k, and so p ∤ |R/Z[α]|, and
the factorization of pR comes from the factorization of x3 −m (mod p).

Note p | k, p2 ∤ k, and p ∤ h in this case. Then:

γ3 =
α6

k3
=

m2

k3
= h2k

which is cubefree and not divisible by p2. So, as in the first part, the factorization of pR is given by factoring x3 − h2k ≡ x3

(mod p). So, we get our answer: pR = (p, γ)3.

We have a Z-basis for R given by 1, α, f2(α)/d2 from 2.41, whence |R/Z[α]| = d2. In the case m ̸≡ ±1 (mod 9), we get
d2 = k. We do further case work. If, modulo 9, m is either of 2 or 5, then 3 ∤ k, so we can factorize directly. But x3 − m is
irreducible over F3 since it is cubic with no roots, so we get that 3 is inert in R.

Ifm is either of 4 or 7modulo 9, then 3 ∤ k still, but x3 −m ≡ (x− 1)3 (mod 3). So 3 is totally ramified in this case, given
by 3R = (3, α− 1)3.
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Ifm is either of±3 (mod 9), then 3 | m, but 3 ∤ k. So we can still factor the minimal polynomial of α and get x3−m ≡ x3

(mod 3), so 3R = (3, α)3 in this case.
Finally, if 9 | m, then 3 | k and 3 ∤ h. So h2k ≡ ±3 (mod 9) and we fall into the previous case when considering γ. That

is, 3R = (3, γ)3 in this last case.

As suggested, considerm ≡ ±1 (mod 9) andm ̸≡ ±8 (mod 27). Let β = (α∓ 1)2/3. Then, β ∈ R and

β2 =
α4 ∓ 4α3 + 6α2 ∓ 4α+ 1

9
=

6α2 + (m∓ 4)α+ (1∓ 4m)

9

Hence,  1
β
β2

 =

 1 0 0
1 ∓2/3 1/3

(1∓ 4m)/9 (m∓ 4)/9 2/3

 1
α
α2


So, disc(β) = det(A)2 disc(α) for this matrix A. I.e.

disc(β) =

(
∓4

9
− m∓ 4

27

)2

(−27m2) =
−(m± 8)2m2

27

Note that this is divisible by 3 but no higher power of 3 since v3(m ± 8) = 2. So, 3 does not divide |R/Z[β]|, and we can
determine the splitting of 3R by factoring the minimal polynomial of β over F3. This is:

x3 − x2 +
1± 2m

3
x− (m∓ 1)2

27
≡ x3 − x2 = x2(x− 1) (mod 3)

since the linear and constant coefficients are divisible by 3. So, we finally get:

3R = (3, β)2(3, β − 1)

in this case.

We directly find:

disc(R) =
disc(α)

|R/Z[α]|2
=

−27m2

(3k)2
= −3h2k2

in this case. But 3 ∤ h, k, so 9 ∤ disc(R). On the other hand, if 3R = P 3 for a prime P ofR, then we would get that v3(disc(R))
is at least

∑
(ei − 1)fi = 2. This isn’t the case, so 3R isn’t the cube of a prime. Since 3 | disc(R), 3 is ramified, and so we only

have the case 3R = P 2Q for distinct primes P,Q.

Exercise (3.27).

Proof. Notice
disc(α) = 44(−5)5 + 55(−5)4 = 32 · 55 · 41

So, for p ̸= 3, 5, we get that p ∤ |R/Z[α]|, and we can find the factorization of pR by factoring x5 − 5x− 5 (mod p).
To handle p = 5, note:

(αR)5 = α5R = 5(α+ 1)R = 5R

since α+ 1 is a unit. Indeed, if α1, . . . , α5 are the conjugates of α, then,

f(x) = x5 − 5x− 5 =
∏
i

(x− αi)

So, evaluating at −1 gives:
−1 = f(−1) =

∏
i

(−1− αi) = −
∏
i

(1 + αi) = −N(1 + α)

So, N(1 + α) = 1 and 1 + α is a unit as claimed. But then αR is the unique prime lying over 5 and 5 is totally ramified. This
aligns with the polynomial factorization since

x5 − 5x− 5 ≡ x5 (mod 5)

as claimed.
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Finally, in the specific case of p = 2 we get:

x5 − 5x− 5 ≡ (x2 + x+ 1)(x3 + x2 + 1) (mod 2)

and each of these is irreducible since they are at most degree 3 and have no roots in F2. So,

2R = (2, α2 + α+ 1)(2, α3 + α2 + 1)

is the factorization.

Exercise (3.28).

Proof. Notice
αn = −an−1α

n−1 − · · · − a0 = prβ

since each coefficient is divisible by pr . Further, taking norms gives:

±an0 = (±a0)
n = N(α)n = N(αn) = N(prβ) = prnN(β)

and so p ∤ N(β) in Z. But then if I is an ideal of R containing both β and p, then it contains N(β) and p, and so it contains
gcd(N(β), p) = 1. So I = R is the only ideal containing both; i.e. p and β are coprime in R.

But now factoring αR, prR, and βR gives that prR is the nth power of an ideal. Namely, it is the subproduct of the factor-
ization of (αR)n consisting of those primes that contain pr (and thus do not contain β).

If gcd(r, n) = 1, then we can choose a, b ∈ N with ar − bn = 1. Then if In = prR we get:

(Ia)n = (In)a = (prR)a = parR = p1+bnR = (pbR)n · pR

and so unique factorization gives that pR is an nth power as well. So, for any prime lying over p, the ramification index must
be at least n, and so exactly n, giving that p is totally ramified.

By 4.21, disc(R) is divisible by
p
∑

(ei−1)fi = p(n−1)·1 = pn−1

when gcd(r, n) = 1. If gcd(n, r) = m > 1, then the above calculations generalize to show pmR is an nth power, so that pR is
a n/mth power. So, each prime lying over p has ei ≥ n/m. So, vp(disc(R)) is at least:

n−
∑

fi ≥ n−
∑ mei

n
fi = n− m

n

∑
eifi = n− m

n
· n = n−m

I.e. disc(R) is divisible by pn−m.

As in 2.43, let f(x) = x5 + ax+ a for a squarefree and not ±1 such that 44a+ 55 is squarefree. We then have:

a4(44a+ 55) = disc(α) = (d3d4)
2 disc(R)

and in that problem we’ve shown d3d4 | a2. Then for any prime divisor p of a, we have r = 1, so the above shows disc(R) is
divisible by pn−1 = p4. If p ̸= 5, then p ∤ 44a+ 55, and if p = 5, then p | 44a+ 55, but p2 ∤ 44a+ 55. So, applying vp gives:

2vp(d3d4) + 4 = 4 + vp(4
4a+ 55) ≤ 5

and so vp(d3d4) ≤ 1/2, but it’s an integer and so vp(d3d4) = 0 for all prime divisors of d3d4. In other words, we must have
d3d4 = 1 and so d3 = d4 = 1.

Similarly, in 2.44 we have f(x) = x5 + ax± a with a, (4a)4 ± 55 both squarefree, whence

a4((4a)4 ± 55) = disc(α) = (d3d4)
2 disc(R)

and d3d4 | a2. But then for any prime divisor p of a, we have that r = 1, so p4 | disc(R). As above, p4 | a4 and p2 ∤ ((4a)4±55),
so p ∤ d3d4 and we get d3 = d4 = 1.

Exercise (3.29).
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Proof. Since p ∤ |R/Z[α]|, we can determine the splitting of p in R by the factorization of f (mod p). But by assumption, f
has a root r ∈ Fp, so x− r is a factor of f(x) (mod p). Hence, P = (p, α− r) is a prime lying over p of inertial degree 1. I.e.
we have an isomorphism Fp

∼= R/P . Composing with the quotient map gives the desired result:

R → R/P → Fp

since under this map, α− r 7→ 0, i.e. α 7→ r.

Let α be a root of f(x) = x3 − x− 1 and let p = 5. Then

disc(α) = −(4(−1)3 + 27(−1)2) = −23

which is not divisible by p. Hence p ∤ |R/Z[α]|, and f(2) = 8 − 2 − 1 = 5 ≡ 0 (mod p), so f has a root in Fp. So, we get a
ring homomorphism φ : R → F5 with α 7→ 2. Thus if β ∈ R satisfied β2 = α, then

φ(β)2 = φ(β2) = φ(α) = 2

but there is no element of F5 that squares to 2. So,
√
α /∈ R. Hence, it is also not in Q[α], since if it were, it is also clearly

integral, satisfying f(x3).

We use a similar approach for the other cases. Let α again be a root of f(x) = x3 − x− 1 and now let p = 7. Then p still
does not divide the discriminant −23, and f(−2) = (−8) − (−2) − 1 = −7 ≡ 0 (mod p). So, we get a morphism R → F7

with α 7→ −2. But since −2 is not a cube in F7, we cannot have 3
√
α ∈ R. Similarly, there is no solution to t2 + 2 = −2 in F7,

and so
√
α− 2 /∈ R.

Finally, let α be a root of f(x) = x5 + 2x− 2 and let R = A ∩Q[α]. Then, f is irreducible by Eisenstein’s criterion, and

disc(α) = 44(2)5 + 55(−2)4

Note that this is not divisible by p = 5 since the second term is but the first term is not. Also note that f(−1) = −1− 2− 2 =
−5 ≡ 0 (mod p). So, we get a map φ : R → F5 with α 7→ −1. Now, suppose there are x, y, z ∈ R with x4 + y4 + z4 = α.
Then,

−1 = φ(α) = φ(x4 + y4 + z4) = φ(x)4 + φ(y)4 + φ(z)4

But in F5, fourth powers are either zero or one, so the sum on the right is one of {0, 1, 2, 3}, none of which are −1 (mod 5).
This is a contradiction, so there are no such x, y, z.

Exercise (3.30).

Proof. As suggested, first consider the case when f(0) = 1. Then, suppose that f only has a root mod p for primes in a finite
set P . Note that f(x) = ±1 only has finitely many roots since f is nonconstant. So, we can choose m to be a multiple of the
product of the primes in P , such that f(m) ̸= ±1 and note that

f(m) = anm
n + an−1m

n + · · ·+ a1m+ 1

This has a prime divisor p since it is neither ±1, and so p ∈ P since f(m) ≡ 0 (mod p). But then p | m, and so f(m) ≡ 1
(mod p), which is a contradiction. So there is no such finite set.

More generally, if f(0) is not necessarily 1, let g(x) = f(xf(0))/f(0). Note that this is also a polynomial with integer
coefficients since each coefficient is divisible by f(0)when f is evaluated at xf(0). But g(0) = f(0)/f(0) = 1, so by the above,
g has a root for infinitely many p. For each such p, if t is a root, then tf(0) is a root of f mod that prime, so f also has roots
mod infinitely many primes.

Now, let K be a number field, so there is some primitive element α with K = Q[α]. Let R = K ∩ A be the ring of
integers, and let f be the minimal polynomial of α over Z. Then, by the above, there are infinitely many primes p such that f
has a root mod p. Of these, at most finitely many divide |R/Z[α]|: disregard them. Now, for each remaining prime p, we have
that the factorization of f over Fp has a linear factor, corresponding to a prime P ofR lying over pwith f(P |p) = 1, as desired.

Fix m, and let ω = e2πi/m. Then, from the above, there are infinitely many primes of Z[ω] with inertial degree 1 over the
corresponding prime of Z. Of these, finitely many divide m: again, disregard them. For each remaining prime P lying over p,
we also know that f(P |p) is the multiplicative order of pmodulom. So, the fact that this equals 1 implies that p ≡ 1 (mod m)
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as desired.

LetM be the normal closure of L/K , and let R,S, T be the rings of integers ofK,L,M , respectively. By the above, there
are infinitely primes U of M such that f(U |p) = 1, where p is the prime of Z lying under U . Of these, only finitely many are
ramified (those that divide the discriminant), which we disregard. Thus, for each such U , we also have e(U |p) = 1. SinceM is
Galois over Q, we also have that

pT = U1 · · ·Ur

splits as the product of r primes, one of which is U , such that they all have the same inertial degrees and ramification indices.
That is, e(Ui|p) = f(Ui|p) = 1 for each i, and so by counting, we see that there must be r = [M : Q] of them.

Now, let P = U ∩R be the prime lying under U in R. We have that

PS = Q1 · · ·Qt

is the product of primes of S, each of which lies under some Ui. But this implies that f(Qi|P ) = e(Qi|P ) = 1 since these
quantities are multiplicative in towers. Hence we must have t = [L : K] and we conclude that each such P splits completely
as claimed. Since each P lies over a different prime p ∈ Z, we conclude that we indeed have infinitely many of them.

Finally, let f,R be as stated. Let K = Frac(R) be the field of fractions, let L = K[x]/(f) = K[α] be the field extension
given by adjoining the root α of f , and let S be the ring of integers in L. By the above, there are infinitely many primes P
of R that split completely in S. Of these, finitely many lie over a prime of Z that divides |S/R[α]|, which we disregard. For
the remaining primes, we can determine the splitting of PS by the factorization of f in (R/P )[x]. Since we already know PS
splits completely, we conclude that f splits completely (into linear factors) mod P , as claimed.

Exercise (3.31).

Proof. Note that a fractional ideal is an R-submodule of K . The product as defined is then the submodule of K generated by
all products of elements in each submodule, which gives a definition independent of representatives.

Clearly II−1 ⊆ R since each product xy with x ∈ I and y ∈ I−1 satisfies xy ∈ R. So, II−1 is an ideal of R. Assume, for
sake of contradiction, that II−1 is a proper ideal. Then there is some γ ∈ K −R such that γII−1 ⊆ R. Then γI−1 ⊆ I−1. By
considering the determinant of the matrix describing the multiplication by γ map, we conclude that γ is integral over R, but
since R is normal, this implies that γ ∈ R, furnishing our contradiction. Hence, the fractional ideals of R form a group, with
R as the identity element.

Let (x/y)I be a fractional ideal for I an ideal of R and x, y ∈ R. Then we can factorize the ideals xR, yR, I into products
of primes, and the factorization of the fractional ideal is clear.

Let G = {αR | α ∈ K×} denote the free abelian group of principal fractional ideals. We have a group homomorphism
K× → G given by α 7→ αR. An element α is in the kernel iff αR = R iff α ∈ R×. Hence, we get that G ∼= K×/R× is the
multiplicative group ofK mod units in R.

Note that if R is a PID then the set of nonzero principal ideals is the set of all nonzero ideals, which is a free abelian
semigroup since R is Dedekind. Conversely, suppose R is a Dedekind domain with the nonzero principal ideals forming a free
abelian semigroup. Let B be a basis.

We would like to show that R is a PID, for which it suffices to show that R is a UFD since R is Dedekind. Since R is
Noetherian, the only thing to check is the uniqueness. That is, suppose

x1 · · ·xn = y1 · · · ym

for irreducibles xi, yi ∈ R. I claim that each xiR, yiR ∈ B. Indeed, for t = xi or t = yi, we can, by assumption, write

tR = (z1R) · · · (zrR)

for some principal ideals ziR ∈ B, not necessarily distinct. WLOG, we may assume that each ziR is a proper ideal, else we
omit it. But then t = uz1 · · · zr for a unit u, and by irreducibility, we must have r = 1 and t = uz1, whence tR = z1R ∈ B.
Thus, the expressions ∏

i

xiR =
∏
j

yjR

are the unique factorization of these principal ideals relative to the basisB. Hence, they must agree, i.e. n = m and xiR = yiR
after rearranging. That is, xi = uiyi for units ui for each i, which completes the proof that R is a UFD.
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By assumption, each fractional ideal inG is of the form αI for α ∈ K× and I a nonzero ideal. Let C denote that ideal class
group of R. Consider the map φ : G → C defined by:

αI 7→ [I]

First, we need to show that this is well-defined. Indeed, the same fractional ideal can have different representatives. Suppose
(x/y)I = (x′/y′)I ′ for ideals I, I ′ and x, y, x′, y′ ∈ R. But then xy′I = x′yI ′, and so I ∼ I ′, i.e. [I] = [I ′]. It is also clear that
φ is a group homomorphism, for

φ((αI)(βJ)) = φ(αβIJ) = [IJ ] = [I][J ] = φ(αI)φ(βJ)

To finish the proof, we will show φ is surjective with kernelH . For the first, note that each ideal class [I] has a representative I ,
which is the image of 1I . For the latter, note that a principal fractional ideal is of the form αR, which maps to [R], the identity.
Conversely, if φ(αI) = [R], then [I] = [R], so xI = yR, whence I = (y/x)R is principal. So, C ∼= G/H with isomorphism φ.

Finally, note that R is Noetherian so if αI is an arbitrary fractional ideal, then I =
∑r

i=1 x1R for some xi ∈ R, whence
αI =

∑r
i=1 αxiR is finitely generated as an R-module. Conversely, suppose that M ⊆ K is a nonzero finitely generated

R-module. That is,

M =

r∑
i=1

αiR

for some αi ∈ R. Let y be the product of the denominators of the αi, so that yαi ∈ R for each i. Then,

M =

r∑
i=1

yαi

y
R =

1

y

(
r∑

i=1

yαiR

)

and the parenthesized expression is an R-submodule of R, i.e. an ideal. So M = (1/y)I is a fractional ideal.

Exercise (3.32).

Proof. Since J is a fractional ideal, we can write it as αH for some ideal H of R and some α ∈ K×. Then,

J/(IJ) = (αH)/(αIH) ∼= H/(IH)

via the multiplication by α, α−1 maps. But then,

|J/(IJ)| = |H/(IH)| = |(R/(IH))/(R/H)| = |R/(IH)|
|R/H|

=
∥IH∥
∥H∥

=
∥I∥∥H∥
∥H∥

= ∥I∥ = |R/I|

as claimed.

Exercise (3.33).

Proof. Note that both A−1 and A∗ are clearly additive groups. Suppose that α ∈ A−1 and s ∈ S. Then sαA ⊆ sS ⊆ S, so
sα ∈ A−1. So A−1 is further an S-module. For α ∈ A∗ and r ∈ R,

TrLK(rαA) = rTrLK(αA) ⊆ R

So rα ∈ A∗ and A∗ is an R-module. Finally, if α ∈ A−1, then

TrLK(αA) ⊆ TrLK(S) = R

so that α ∈ A∗.

First, suppose that A is a fractional ideal. Then it’s an S-module, so SA = A. Further, there is some x/y ∈ L and ideal I
of S with A = (x/y)I . But then yA = xI ⊆ S, so y ∈ A−1 shows that A−1 ̸= {0}. Conversely, suppose that SA = A and
A−1 ̸= {0}. Let y ̸= 0 be in A−1. Then yA ⊆ S and is an S-module since (yA)S = y(AS) = yA, so yA is an ideal of S. But
then A = (1/y)(yA) is a fractional ideal.

SupposeA ⊆ B. If α ∈ B−1, then αA ⊆ αB ⊆ S, so α ∈ A−1 andA−1 ⊇ B−1. If α ∈ B∗, thenTrLK(αA) ⊆ TrLK(αB) ⊆
R, so α ∈ A∗ and A∗ ⊇ B∗.

From the previous, we have that A−1 ⊆ A∗, so diff A = (A∗)−1 ⊆ (A−1)−1 as claimed.
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We’ve noted that the fractional ideals form a group, with I−1 being the inverse of I under this group operation, and so
(I−1)−1 = I .

Hence, for a fractional ideal I , we have diff I ⊆ (I−1)−1 = I as desired.
The next two facts follow from a unified fact: if diff A is contained in a fractional ideal J , then it is a fractional ideal.

Indeed (diff A)−1 ⊇ J−1 ̸= {0}, so it suffices to show S(diff A) = diff A, and since 1 ∈ S, it further suffices to show that
S(diff A) ⊆ diff A. But note that diff A = (A∗)−1, and we’ve already noted that the inverse of any abelian subgroup of L is
an S-module, so diff A is a fractional ideal.

To see how this lemma implies both of the claims, note that diff I ⊆ I exhibits diff I as a subset of a fractional ideal, so by
the lemma diff I is a fractional ideal. Then, if A ⊆ I , then A∗ ⊇ I∗, and diff A = (A∗)−1 ⊆ (I∗)−1 = diff I . But we’ve just
shown that diff I is a fractional ideal, so diff A is contained in a fractional ideal and hence is also itself a fractional ideal.

Then

Exercise (3.34).

Proof.

Exercise (3.35).

Proof.

Exercise (3.36).

Proof.

Exercise (3.37).

Proof.

Exercise (3.38).

Proof.

Exercise (3.39).

Proof.

Exercise (3.40).

Proof.
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