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Exercise (0.1).

Proof. As noted, we need to characterize a, b ∈ Q such that 2a, a2 − db2 ∈ Z. Multiplying the second through by 4 gives
(2a)2 − d(2b)2 ∈ Z, whence d(2b)2 ∈ Z since 2a ∈ Z, from which we get 2b ∈ Z by prime factorization and the fact that d is
squarefree. So, we may rewrite a = x/2 and b = y/2 for x, y ∈ Z, and wish to characterize when x2 − dy2 is a multiple of 4.
Finally, we consider cases: suppose d ≡ 2, 3 (mod 4). If y is odd, then x2 − dy2 ≡ x2 − d ̸≡ 0 (mod 4) since d is not a square
modulo 4. So instead, y must be even, whence x is also even and α = a + b

√
d = (x/2) + (y/2)

√
d ∈ Z[

√
d]. So in this case

Z[
√
d] is precisely the ring of integers.
On the other hand, suppose now d ≡ 1 (mod 4). Then x2−dy2 ≡ x2− y2 ≡ 0 (mod 4)whenever x and y have the same

parity. I.e. the ring of integers is
{

x+y
√
d

2 : x, y ∈ Z, x ≡ y (mod 2)
}

= Z
[
1+

√
d

2

]
. Indeed, one can check that in this case

the minimal polynomial for (1 +
√
d)/2 is T 2 − T − (d− 1)/4.

Exercise (0.2).

Proof. First, we simply verify the product:

(2, 1 +
√
−5)2(3, 1 +

√
−5)(3, 1−

√
−5) = (4, 2 + 2

√
−5,−4 + 2

√
−5)(9, 3 + 3

√
−5, 3− 3

√
−5, 6) = (2)(3) = (6)

Here we’ve claimed that (4, 2 + 2
√
−5,−4 + 2

√
−5) = (2) and (9, 3 + 3

√
−5, 3 − 3

√
−5, 6) = (3). Let’s verify the first of

these. One containment is obvious: each generator on the left is a multiple of 2, and so is contained in the ideal (2). For the
reverse, we need to show that 2 is in the ideal on the left, which is shown by the following calculation:

(2 + 2
√
−5)− (−4 + 2

√
−5)− (4) = 2

Let’s now verify the factorization of (3). Again, one direction is obvious since each generator on the left is a multiple of 3. For
the reverse, note that 9− 6 = 3, so 3 is contained in the ideal on the left. So the factorization is indeed as claimed.

Finally, let’s check that this is a factorization into primes in Z[
√
−5]. For each, we show that the quotient is a domain by

lifting to the polynomial ring Z[T ]:

Z[
√
−5]/(2, 1 +

√
−5) = Z[T ]/(T 2 + 5, 2, 1 + T ) = F2[T ]/(T

2 + 5, T + 1) = F2[T ]/(T + 1) = F2

which is a domain. Note we used the fact that in F2[T ]: (T 2 + 5, T + 1) = (T + 1) since T 2 + 5 = (T + 1)2 is a multiple of
T + 1. Similarly:

Z[
√
−5]/(3, 1 +

√
−5) = Z[T ]/(T 2 + 5, 3, 1 + T ) = F3[T ]/(T

2 + 5, T + 1) = F3[T ]/(T + 1) = F3

since T 2 + 5 = (T + 1)(T − 1) over F3. Finally,

Z[
√
−5]/(3, 1−

√
−5) = Z[T ]/(T 2 + 5, 3, 1− T ) = F3[T ]/(T

2 + 5, T − 1) = F3[T ]/(T − 1) = F3

for the same reason. These are all domains, so each of these ideals is indeed prime as claimed.

Exercise (1.1).

Proof. [Note: this exercise does not require A to be a domain, so long as we are okay with multiplicative sets containing 0 (in
which case the localization is trivial)]

Suppose first that S is a saturated multiplicative subset, and let T denote its complement. Let x ∈ T . I claim its image
x/1 ∈ S−1A is not a unit. Indeed, if it were, then there would be a/s ∈ S−1A such that (x/1)(a/s) = 1/1, i.e. u(ax− s) = 0
for some u ∈ S. But then uax = us ∈ S and by saturation, x ∈ S, contrary to assumption. So, x/1 is not a unit in S−1A,
whence it is contained in a prime ideal of S−1A. But this corresponds precisely to a prime ideal P of A containing x that is
disjoint from S. I.e. we’ve found a prime ideal of A contained in T that contains x. Taking the union over all x ∈ T gives the
result that T is a union of primes, as claimed.

Conversely, suppose that T =
⋃

i Pi is a union of prime ideals. Let ab ∈ S for some a, b ∈ A. For each i, we have ab /∈ Pi,
so a /∈ Pi and b /∈ Pi. So a, b are both not contained in the union of the Pi, i.e. they are not contained in T . In other words,
they are contained in S.



Let S denote the collection of all saturated multiplicative subsets of A containing S. This is a nonempty collection since
A ∈ S , so we can consider S′ =

⋂
S . I claim S′ is a saturated multiplicative subset of A. Indeed, if ab ∈ S′, then ab ∈ U for

each U ∈ S , whence a, b ∈ U for each such U , so that a, b ∈ S′. Further, it is clear that 1 ∈ S′ since 1 ∈ U for each U ∈ S ,
and it is clear that S′ is closed under multiplication. This immediately handles the existence and uniqueness questions posed.

Now, we’d like to show S′ = A \
⋃
p. Let V = A \

⋃
p for notation. Note that V is a multiplicative set, for if a, b ∈ V ,

then a, b /∈ p for each indexed prime, so that ab /∈ p by primality, and ab ∈ V . Further, it is obvious that the complement of V
is a union of primes, so V is saturated. By our definition of S′, this gives S′ ⊆ V . For the reverse, let x ∈ V . If x/1 is not a
unit in S−1A, then there is some prime ideal of S−1A containing x/1, which corresponds to a prime ideal of A disjoint from
S containing x. But this precisely contradicts the definition of V . So, x/1 is a unit in S−1A, which means it has an inverse a/s
for some a ∈ A and s ∈ S. That is, ax/s = 1/1, whence uax = us for some u ∈ S, giving uax ∈ S. But then uax ∈ S′ since
S′ contains S, and since S′ is saturated, u, a, x ∈ S. In particular, we’ve shown that V ⊆ S′, and so V = S′.

Consider now the localization maps f : A → S−1A and g : A → S′−1
A. First, note that if s ∈ S, then s ∈ S′, so

g(s) = s/1 is a unit. By the universal property, we get a unique map h : S−1A → S′−1
A with g = h ◦ f . Similarly, the

argument above shows that if s ∈ S′, then f(s′) is a unit in S−1A so we get a map h′ : S′−1
A → S−1A with f = h′ ◦ g. But

then g = (h ◦ h′) ◦ g and f = (h′ ◦ h) ◦ f , so by the uniqueness part of universal property, we get h ◦ h′ = id and h′ ◦ h = id.
I.e. S−1A ∼= S′−1

A. Note that in the case that A is a domain, this isomorphism is in fact equality when both localizations are
considered as subrings of the field of fractions.

In summary, S−1A = S′−1
A and S′ = V is determined by the primes disjoint from S, which are precisely the primes in

A that remain prime in S−1A, explaining the claimed characterization.

Exercise (2.1).

Proof. Note that (
√
5+ 1)(

√
5− 1) = 4 = 2 · 2. I claim these elements (

√
5± 1 and 2) are irreducible in Z[

√
5], demonstrating

the failure of unique factorization. Indeed, suppose α is one of these three elements, and that it can be written as a product
α = βγ. Taking norms givesN(β)N(γ) = N(α) = ±4. IfN(β) = ±1, then it is a unit, and ifN(β) = ±4, then γ is a unit and
we’re done. So, the only possibility remaining is thatN(β) = ±2. Writing β = u+v

√
5 for integers u, v gives u2−5v2 = ±2.

But modulo 4, this gives (u− v)(u+ v) ≡ 2 (mod 4), which is impossible since u− v and u+ v have the same parity.

Exercise (2.2).

Proof. Since f is reducible in K[X], we can write f = gh with g, h ∈ K[X]. Further, we may assume g, h are also monic by
rescaling if necessary.

Now, let L be a splitting field for f over K , and let B be the integral closure of A in L. In L[X], the polynomials g, h split
completely since they are factors of f , which splits completely. Each root of g in L is a root of f , which is a monic polynomial
with coefficients in A. So, each root of g is contained in B. The coefficients of g are polynomials in the roots with integer
coefficients (here we use that g is monic), so the coefficients of g are then also in B, and so integral over A. But the coefficients
of g are also elements ofK by assumption, so since A is integrally closed inK , they must be in A itself. That is, g ∈ A[X], and
the same argument shows h ∈ A[X], completing the proof.

Exercise (2.3).

Proof. Note that if M/L and L/K are field extensions, then

disc(M/K) = disc(L/K)[M :L]NL/K(disc(M/L))

So, to show that L/K inseparable has discriminant zero, it suffices to show this for some intermediate subextension. First, we
can replace K with its separable closure in L and assume that L/K is purely inseparable. Now, it is known that any element
of L has minimal polynomial T pr − a for some r ∈ Z and a ∈ K . Choose an element α ∈ L \K with minimal polynomial
f(T ) = T pr − a and replace L with the extensionK[α]. Then a basis for the extension is 1, α, . . . , αpr−1. With respect to this
basis, the discriminant is:

±N(f ′(α)) = ±N(prαpr−1) = ±N(0) = 0

as desired.

Exercise (2.4).

Proof. First, it is clear that a ̸= (2) since 1 +
√
−3 ∈ a, but 1 +

√
−3 /∈ (2) since 1+

√
−3

2 /∈ Z[
√
−3] since {1,

√
−3} is a basis

for Q(
√
−3) over Q. Directly, we have:

a2 = (4, 2 + 2
√
−3, 4) = 2(2, 1 +

√
−3) = 2a

2



This shows that we do not have uniqueness of factorization of ideals into primes. Indeed, if we did, then writing (2) = p1 · · · pr
and a = q1 · · · qm gives the distinct factorizations

p1 · · · pr · q1 · · · qm = q21 · · · q2m

for a2 = 2a; if these were not distinct then we would conclude a = (2).

Exercise (2.5).

Proof. Let α ∈ A[β] ∩ A[β−1]. Then α = f(β) = g(β−1) for polynomials f, g ∈ A[x] of degrees m,n, respectively. Let
r = m+ n− 1 and consider the A-submoduleM = A⊕ βA⊕ · · · ⊕ βrA of B. Since 1 ∈ M , it now suffices to show thatM
is also an A[α]-module, because then it is automatically faithful and clearly finitely generated.

In particular, it suffices to show that αβi ∈ M for i ∈ {0, . . . , r}. For i < n, we have αβi = f(β)βi ∈ M because the
exponents on β are all in the range [i,m+ i] ⊆ [0, r]. For i ≥ n, we have αβi = g(β−1)βi ∈ M since the exponents are in the
range [i− n, i] ⊆ [0, r].

Exercise (2.6).

Proof. Note that (1 +
√
7)(1 −

√
7) = −6 and (1 +

√
10)(1 −

√
10) = −9 are both divisible by 3. Hence 3 | αiαj for i ̸= j

since each product contains at least one of the above products.
On the other hand, the α1, . . . , α4 is a full set of conjugates, so T (αn

i ) =
∑4

j=1 α
n
j . But modulo 3, this is the same as

(
∑4

j=1 αj)
n, since each of the cross terms is zero mod 3 as we’ve just shown. Explicitly, this is:

T (αn
i ) ≡ (α1 + · · ·+ α4)

n = 4n ≡ 1n = 1 (mod 3OK)

In other words, T (αn
i )− 1 = 3r for some r ∈ OK . But then r is integral over Z and is rational since T (αn

i )− 1 ∈ Z, so r ∈ Z.
In other words, T (αn

i ) ≡ 1 (mod 3Z). But if αn
i = 3β for some β ∈ OK , then T (αn

i ) = T (3β) = 3T (β) ∈ 3Z, contrary to
what we’ve shown. So no power of αi is a multiple of 3.

Now, we have

3 | g(α) in Z[α] ⇐⇒ g(α) ∈ 3Z[α] ⇐⇒ g(α) ∈ Z[α]/(3) = Z[x]/(3, f(x)) = F3[x]/(f̄(x)) ⇐⇒ f̄ | ḡ in F3[x]

as claimed.

The first part of the claim is simply restating the divisibility results above. Since F3[x] is a UFD (in fact a PID), we conclude
that f̄ doesn’t divide f̄n

i for all n, so f̄ has an irreducible factor that doesn’t divide f̄i. But since f̄ divides f̄i · f̄j , this irreducible
factor must appear in the factorization of f̄j for each j ̸= i as claimed.

As noted, f̄ has at least 4 distinct irreducible factors now. It is also the reduction of the minimal polynomial of α, so it
has degree at most 4 since [Q(

√
7,
√
10) : Q] = 4. So, each factor must be linear. But F3[x] only has 3 distinct linear monic

polynomials: x, x− 1, x− 2. This is our contradiction.

Exercise (2.7).

Proof. First, it is clear that S−1B is integral over S−1A. Indeed, for b/s ∈ S−1B, since b is integral over A, we have

bn + an−1b
n−1 + · · ·+ a0 = 0

for some ai ∈ A. But then

(b/s)n + an−1/s(b/s)
n−1 + · · ·+ a0/s

n = (bn + an−1b
n−1 + · · ·+ a0)/s

n = 0

and for each i, it is clear that ai/sn−i ∈ S−1A.

So, it remains to show that S−1B is integrally closed inL. Suppose thatα ∈ L satisfies a monic polynomial with coefficients
in S−1B. I.e. for some bi ∈ B and si ∈ S:

αn + (bn−1/sn−1)α
n−1 + · · ·+ b0/s0 = 0

Let s = s0 · · · sn−1 be the product. Thenmultiplying through by sn cancels all of the denominators, so we get that sα satisfies a
monic polynomial with coefficients in B, and so is integral over B. Since B is integrally closed in L, we conclude that sα ∈ B.
But then s ∈ S as the product of elements of S, so α = (sα)/s ∈ S−1B.
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Exercise (2.8).

Proof. Recall that localization is exact. We have the exact sequence of A-modules:

0 → p → A → A/p → 0

and we can localize it at p to get:
0 → pAp → Ap → (A/p)p → 0

On the other hand, we can recognize that p corresponds to the ideal 0 in A/p, and so this final localization is the field of
fractions. I.e. we have

0 → pAp → Ap → Frac(A/p) → 0

which is what we sought to show.

Exercise (3.1).

Proof. No, k[x, y] is not a Dedekind domain as (x) is a nonzero, non-maximal prime ideal.

Exercise (3.2).

Proof. We’ve seen already that because 3, 7 ̸≡ 1 (mod 4) and are squarefree, the ring of integers of Q(
√
3) and Q(

√
7) are

Z[
√
3] and Z[

√
7], respectively. To see that the ring of integers in Q(

√
3,
√
7) is not Z[

√
3,
√
7], it suffices to show that α =√

3+
√
7

2 is integral over Z, since clearly α /∈ Z[
√
3,
√
7].

But this is a direct manipulation. We have (2α)2 = 3 + 7 + 2
√
21, so

84 = (4α2 − 10)2 = 16α4 − 80α2 + 100

and so
α4 − 5α2 + 1 = 0

completing the argument.

Exercise (3.3).

Proof. First, suppose p = x2 + y2. Modulo 4, the only squares are 0 and 1, so we get that p must be one of 0, 1, 2 mod 4. The
first case is impossible since then p is divisible by 4, and the third case happens only for p = 2. Otherwise, we’ve shown p ≡ 1
(mod 4) as claimed.

Conversely, suppose p ≡ 1 (mod 4). Then 4 | p − 1 = |F×
p |, which is a cyclic group, so there is some α ∈ F×

p of order 4.
Thus, in Fp[x], the polynomial x2 + 1 is reducible, namely as (x− α)(x+ α). Now, if we consider the ideal (p) ⊆ Z[i], we can
compute:

Z[i]/(p) = Z[x]/(p, x2 + 1) = Fp[x]/(x
2 + 1)

which is not a domain as we’ve just shown that x2 + 1 is reducible. So (p) is not prime and instead splits as a product of two
prime ideals in Z[i]. But this is a PID, so we get a factorization of p itself as a product p = uv for u, v ∈ Z[i] primes. Taking
norms gives p2 = N(u)N(v) and since neither of u, v is a unit, we conclude N(u) = N(v) = p. But if u = x + iy, then this
gives p = N(u) = x2 + y2 as desired.

Suppose now that p = x2+2y2. The only squares mod 8 are 0, 1, 4, so we conclude that p (mod 4) is one of: 0, 1, 2, 3, 4, 6.
The cases 0, 4, 6 are ruled out immediately since p would be even and not equal to 2. If p ≡ 2 (mod 8), then p = 2. Otherwise,
p ≡ 1, 3 (mod 8) as claimed.

Conversely, suppose p is either 1 or 3 modulo 8. By quadratic reciprocity, −2 is a square mod p, so x2 + 2 factors in Fp.
Similarly, we now consider the splitting of (p) ⊆ Z[

√
−2]:

Z[
√
−2]/(p) = Z[x]/(x2 + 2, p) = Fp[x]/(x

2 + 2)

so (p) splits as a product of two primes. The rest of the argument is exactly as above, where we conclude by noting that
p = N(x+ y

√
−2) = x2 + 2y2.

Finally, suppose p = x2 + 3y2. Modulo 3, the squares are 0 and 1, so this gives that p is itself either 0 or 1 mod 3. If p ≡ 0
(mod 3), then p = 3. Otherwise, p ≡ 1 (mod 3) as claimed.

Conversely, suppose p ≡ 1 (mod 3). Then 3 | p − 1 = |F×
p |, so as in the first case, there is some α ∈ Fp of order 3. So,

α satisfies x3 − 1 but not x − 1, whence it satisfies their quotient: (x3 − 1)/(x − 1) = x2 + x + 1. We conclude that this

4



polynomial is thus reducible in Fp[x]. This gives the desired splitting of (p) in the ring of integers of Q(
√
−3), which is Z(ζ3)

for ζ3 = (−1 +
√
−3)/2 a primitive cube root of unity. Thus:

Z[ζ3]/(p) = Z[x]/(x2 + x+ 1, p) = Fp[x]/(x
2 + x+ 1)

Again, the argument continues as before, giving p = N(a+bζ3) = a2−ab+b2. If a is even, we get p = (a/2−b)2+3(a/2)2 and
if b is even we similarly get p = (a− b/2)2+3(b/2)2. Finally, if a, b are both odd, then we get p = [(a+ b)/2]2+3[(a− b)/2]2.
So, in any case, we are done.

Exercise (3.4).

Proof. More directly, A is noetherian as the image of k[T,U ] under the map T 7→ X2 and U 7→ X3.

The above realizes A as the quotient k[T,U ]/(T 3 − U2). So, if p ∈ A is a prime, it corresponds to a prime P of k[T,U ]
containing T 3−U2. But this is irreducible, so (T 3−U2) is a height 1 prime and so either P = (T 3−U2), in which case p = 0
or else P has height 2, making it and p both maximal.

Exercise (4.1).

Proof. Let A be any domain and B = A[x] the polynomial ring in one variable over A. Then B is a domain, A is a subring, and
p = (x) is a nonzero prime ideal, but p ∩A = 0.

Exercise (4.2).

Proof. First, write the factorization ofDB, and note that one of the factors isPe(D/P). Then, similarly, write the factorization
of PA and note that one of the factors is pe(P/p). Substitute the latter expression into the former to get the factorization of
DA, which includes the factor (

pe(P/p)
)e(D/P)

= pe(D/P)e(P/p)

By uniqueness of factorization, this exponent must be exactly e(D/p) as claimed.
The statement about inertial degrees is even more direct, since degrees multiply in towers of field extensions. Namely:

f(D/P)f(P/p) = [C/D : B/P][B/P : A/p] = [C/D : A/p] = f(D/p)

Exercise (4.3).

Proof. Note that OK = Z[α] since it has discriminant −31 which is prime. Hence we can find factorizations of primes by
factoring h(X) = X3 +X + 1 in Fp. Let g denote the number of primes occuring in the factorization of pOK .

First, if p ramifies, then p must divide the discriminant. I.e. p = 31, and in this case,

h(X) = X3 +X + 1 ≡ (X − 3)(X − 14)2 (mod 31)

So, the case g = 2, e = (1, 2) and f = (1, 1) (as it must by
∑

eifi = 3) occurs, and the other ramified case does not occur,
namely (e, f, g) = (3, 1, 1).

Now, we may assume that e(p/p) = 1 for each p lying over p and that p ̸= 31. If g = 1, then p is inert, which happens iff
h(X) is irreducible mod p iff h has no root mod p. This does happen, say for p = 2, since neither 0 nor 1 is a root in F2.

If g = 2, then we must have f = (1, 2), so h factors as a linear polynomial and an irreducible quadratic. For p = 3, we get

h(X) = X3 +X + 1 ≡ (X − 1)(X2 +X + 2) (mod 3)

and the latter factor is irreducible is it does not have 0, 1, 2 as a root in F3.
Finally, if g = 3, then h totally splits into (distinct) linear factors mod p. I haven’t yet found such a p, but I can prove that

one exists. First, let L be a splitting field for h over K , and note that L is Galois over Q. Now L = Q[β] for some integral
β with minimal polynomial u ∈ Z[X]. I claim that for infinitely primes p, there exists an n ∈ Z such that p | u(n) [Proven
below]. In particular, there is one such prime that does not divide |OL/Z[β]| and is also not equal to 31. For this prime, the
factorization of u gives the factorization of pOL. But since L is Galois and u has a root (n), u must split completely into linear
factors, and so pOL is the product of distinct primes of inertial degree 1. This completes the argument, since the inertial degree
is multiplicative, and so pOK is also the product of distinct primes of inertial degree 1.
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To complete the proof, we prove the subclaim. Let u ∈ Z[x] be a nonconstant polynomial. Then I claim there are infinitely
many primes p such that there exists an n ∈ Z with p | u(n). First, suppose u(0) = 1. Then if P is any finite set of primes,
consider n = k

∏
p∈P p for any k ∈ Z. We have n ≡ 0 (mod p) for each p ∈ P and so u(n) ≡ u(0) = 1 (mod p).

Since u is nonconstant, it takes the value 1 only finitely many times, and so for k sufficiently large, u(n) ̸= 1 but is not
divisible by any prime in P . So it must be divisible by some other prime, and this shows that no finite set of primes suffices.
If u(0) ̸= 1, then consider the polynomial g(x) = u(u(0)x)/u(0). This still has integer coefficients by construction, and has
g(0) = u(0)/u(0) = 1, so by the above, there are infinitely many primes p for which there exists an n such that u(u(0)n)/u(0)
is divisible by p. But then u(u(0)n) itself is divisible by p, and so the claim is shown.

Exercise (4.4).

Proof. Note that for K = Q(
√
−23), the ring of integers is OK = Z[α] for α = (1 +

√
−23)/2 with minimal polynomial

f(x) = x2 − x+ 6 and discriminant∆ = −23. The Minkowski bound is:

2!

22

(
4

π

)1

| − 23|1/2 = (2/π)
√
23 < 4

So, each ideal class has an integral representative of norm 1, 2, or 3. The only integral ideal of norm 1 is OK itself, representing
the trivial ideal class. Any ideal of norm 2 divides (2), so we start by considering the factorization of 2, which requires factoring
f mod 2:

f(x) = x2 − x+ 6 ≡ x(x− 1) (mod 2)

So (2) = (2, α)(2, α− 1) and each of these has norm 2. Similarly analyzing mod 3 gives:

f(x) = x2 − x+ 6 ≡ x(x− 1) (mod 3)

so that (3) = (3, α)(3, α− 1). SinceN(α) = N(α− 1) = 6, we get (α) = (2, α)(3, α) and (α− 1) = (2, α− 1)(3, α− 1). So
we get

(2, α) ∼ (3, α)−1 ∼ (3, α− 1) ∼ (2, α− 1)−1

where ∼ denotes equivalence of ideal classes. It remains to show that (1), (2, α), (2, α − 1) are pairwise distinct. To see that
neither (2, α) nor (2, α− 1) are principal, it suffices to show that no element of OK has norm two. But

N(a+ bα) = (a+ bα)(a+ b(1− α)) = a2 + ab+ 6b2 =
1

4
(2a+ b)2 +

23

4
b2

If b ̸= 0, then N(a+ bα) ≥ 23/4 > 2, so it cannot be 2. So b = 0, and N(a) = a2 ̸= 2.
Finally, it remains to show that (2, α) ̸∼ (2, α − 1), for which it suffices to show that (2, α)2 is not principal. If it were

principal, then again we’d find a + bα with norm 4. Again, if b ̸= 0, then the norm is too big, so we must have b = 0 and
a = ±2. So, it suffices to show that (2, α)2 ̸= (2). But finally, comparing factorizations means that it suffices to show that
(2, α) ̸= (2, α − 1). This is true, since if they were equal, that ideal would contain (α) − (α − 1) = 1, and so wouldn’t be
proper, whereas we know that it is prime. So, the class number is exactly 3.

Now, we use the same approach for K = Q(
√
−47), OK = Z[α] for α = (1 +

√
−47)/2 of minimal polynomial f(x) =

x2 − x+ 12 and discriminant ∆ = −47. The Minkowski bound is:

2!

22

(
4

π

)1

| − 47|1/2 = (2/π)
√
47 < 5

Now we seek integral ideals of norm 1, 2, 3, or 4. Again the only ideal of norm 1 is (1).
As above, when considered either modulo 2 or 3, we get that f(x) splits as x(x − 1). So (2) = (2, α)(2, α − 1) and

(3) = (3, α)(3, α− 1). Again considering norms gives

(α) = (2, α)2(3, α) and (α− 1) = (2, α− 1)2(3, α− 1)

So, the ideal classes represented by all of the above primes are in the cyclic subgroup generated by the class of (2, α). Now, if
I is an integral ideal of norm 4, then each of its prime factors divides 2, so must be one of (2, α), (2, α− 1). Comparing norms
shows that I is a product of exactly two such factors, so I is also a power of (2, α) in the ideal class group.

So, it suffices to find the order of (2, α) in the ideal class group. First, note:

(2, α)2 = (4, 2α, α2) = (4, 2α, α− 12) = (4, α)

(2, α)3 = (8, 4α, 2α, α2) = (8, 2α, α− 12) = (8, α− 4)

(2, α)5 = (32, 8α, 4α− 16, α2 − 4α) = (32, 8α, 4α− 16,−3α− 12) = (α+ 4)
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where the final equality follows from:

32 = (α+ 4)(5− α) and 8α = 8(α+ 4)− 32 and 4α− 16 = 4(α+ 4)− 32 and − 3α− 12 = −3(α+ 4)

So, the order of (2, α) divides 5. It finally remains to show that it isn’t itself principal, for which it suffices to show that there
is no element of norm 2. But

N(a+ bα) = (a+ bα)(a+ b(1− α)) = a2 + ab+ 12b2 =
1

4
(2a+ b)2 +

47

4
b2

For this to equal 2, we must have b = 0, lest it be too big, but then a2 = 2, which has no integer solutions. So we’re done and
the ideal class group is cyclic of order 5.

Exercise (4.5).

Proof. Let I1, . . . , In be integral ideals ofK that represent all ideal classes ofK , so that the class group has order n. Then Inj is
principal for each j, sowe can find elementsα1, . . . , αn ∈ K× with Inj = (αj). Consider the extensionL = K(α

1/n
1 , . . . , α

1/n
n )

given by adjoining the n-th roots of these numbers.
First, note that α1/n

j ∈ OL since they satisfy Tn − αj , and so are integral over OK . Second, note that

(α
1/n
j )n = (αj) = Inj OL

But by uniqueness of factorization in OL, this gives IjOL = (α
1/n
j ). Finally, if I is an arbitrary nonzero ideal of OK , then

I = γIj for some γ ∈ K× and some j, whence IOL = γIjOL = (α
1/n
j γ) is principal. So, indeed, every ideal of OK is

principal in OL.

Exercise (4.6).

Proof. By the invariant factor decomposition, we can find an integral basis for OK of the form

1,
f1(α)

d1
,
f2(α)

d2

where fi ∈ Z[x] is monic of degree i and 1 | d1 | d2 are the invariant factors of OK over Z[α]. Thus, |OK/Z[α]| = d1d2. We
can compute the discriminant of α directly:

∆(Z[α]/Z) = −N(3α2 − 1) = −N(3α3 − α)/N(α) = −N(2α− 6)/(−2) = 4N(α− 3) = −4f(3) = −4 · 26 = −23 · 13

But we also have ∆(Z[α]/Z) = ∆(OK/Z)|OK/Z[α]|2 = ∆(OK/Z)(d1d2)2. So, d41 divides −23 · 13 which forces d1 = 1 and
d22 | −23 ·13which gives d2 = 1 or d2 = 2. Assume d2 = 2 for contradiction. After adding multiples of previous basis elements
if necessary, we can now assume our basis is of the form

1, α,
α2 + xα+ y

2

where x, y ∈ {0, 1}. In particular, these are all algebraic integers, so their traces should be in Z. If α1, α2, α3 denote the roots
of x3 − x+ 1 over a splitting field, then we get

T (α2) = α2
1 + α2

2 + α2
3 = (α1 + α2 + α3)

2 − 2(α1α2 + α1α3 + α2α3) = 02 − 2(−1) = 2

So, our last basis element has trace
2 + 0 + 3y

2
= 1 +

3

2
y ∈ Z

which forces y = 0. Similarly, we can take the norm of our last basis element to get

N

(
α2 + xα

2

)
=

1

8
N(α)N(α+ x) = −1

4
f(−x) = ±1

2
/∈ Z

which is a contradiction. So, indeed d2 = 1 and OK = Z[α].

Now we’d like to compute the class number. Note that x3 − x+2 only has one real root. Indeed it strictly increases on the
interval (−∞,−

√
1/3), giving one root; strictly decreases on (−

√
1/3,

√
1/3)with a minimum of f(

√
1/3) > 0; and strictly
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increases on the rest of (
√
1/3,∞), thus remaining strictly positive. Hence K has two nonreal complex embeddings and so

the Minkowski bound is:
3!

33

(
4

π

)1

| − 2313|1/2 16
√
26

9π
< 3

So, if any ideal of OK is not principal, it must have norm 2, in which case it must be a prime lying over 2. So, we consider the
factorization of 2, which amounts to the factorization:

x3 − x+ 2 ≡ x(x− 1)2 (mod 2)

So, we get
(2) = (2, α)(2, α− 1)2

in OK . But note that N(α) = −2, so 2 is a multiple of α, showing that (2, α) = (α) is principal. Similarly, N(α − 1) =
−f(1) = −2, so (2, α− 1) = (α− 1) is also principal. So, there are no non-principal ideals of norm 2, and hence none at all.
In other words, OK has class number 1 and is a PID.

Exercise (4.7).

Proof. Let i =
√
−1 and α = 1+

√
5

2 . Note the minimal polynomial of α is x2 − x− 1. We have that OK ⊇ Z[i, α], and we can
compute the discriminant∆ of the basis {1, α, i, iα} directly:

∆ = det


T (1) T (α) T (i) T (iα)
T (α) T (α+ 1) T (iα) T (i(α+ 1))
T (i) T (iα) T (−1) T (−α)
T (iα) T (i(α+ 1)) T (−α) T (−α− 1)

 = det


4 2 0 0
2 6 0 0
0 0 −4 −2
0 0 −2 −6

 = 202 = 2452

So, we can conclude that |OK/Z[i, α]| | 20. Suppose 2 | |OK/Z[i, α]|. Then we can find u ∈ OK \ Z[i, α] of the form

u =
a+ bα+ ci+ diα

2

for a, b, c, d ∈ Z. Let σ : K → K denote the automorphism with
√
5 7→ −

√
5 and keeps i fixed. I.e. σ(α) = 1−α and σ(i) = i.

Then σ(u) ∈ OK as well, and

σ(u) =
a+ b(1− α) + ci+ di(1− α)

2

But then the sum of these is u+σ(u) = (a+ b/2)+ (c+ d/2)i ∈ OK ∩Q(i) = OQ(i) = Z[i]. So we must have b, d even. Then

u− bα+ diα

2
=

a+ ci

2
∈ OK ∩Q(i) = Z[i]

as well, giving that a, c are even. But then u ∈ Z[i, α] contrary to assumption. So |OK/Z[i, α]| | 5. Similarly, if we assume that
it equals 5, we can find

v =
w + xα+ yi+ ziα

5
∈ OK \ Z[i, α]

for w, x, y, z ∈ Z. If we let τ be the other generating automorphism with τ(α) = α and τ(i) = −i, we get

v + τ(v) =
2w + 2xα

5
∈ OK ∩Q(α) = Z[α]

and so both w, x are multiples of 5. Finally,

iv + τ(iv) =
−2y − 2zα

5
∈ Z[α]

and so y, z are multiples of 5 as well. But this shows that v ∈ Z[i, α] contrary to assumption and so we must have OK = Z[i, α]
after all.

This immediately shows that 2, 5 ramify and no other primes, as they are precisely the primes dividing ∆. We know that
i(1− i)2 = 2, so we’ve already factorized somewhat.

Z[i, α]/(1− i) = Z[α][x]/(x2+1, 1−x) = Z[α][x]/(2, x−1) = Z[α]/(2) = Z[x]/(2, x2−x−1) = F2[x]/(x
2+x+1) = F4
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so that (1−i) is a prime ideal. Thus, we’ve factored (2) = (1−i)2 as ideals inOK , and indeed it ramifies with index 2. Similarly,
(2α− 1)2 = (

√
5)2 = 5, and

Z[i, α]/(2α− 1) = Z[i][x]/(x2 − x− 1, 2x− 1) = Z[i][x]/(5, x+ 2) = Z[i]/(5) = F5[x]/(x
2 + 1)

However, this is not a domain since x2 + 1 = (x− 2)(x+ 2) in F5[x] is reducible. But this suggests the fix: we should enlarge
our ideal to contain the preimage of x+2, namely 2+i, and so we consider the ideal (2α−1, 2+i). We’ll need the factorization
so we compute:

(2α−1, 2+i)(2α−1, 2−i) = (4α2−4α+1, (2α−1)(2+i), (2α−1)(2−i), 5) = (5, (2α−1)(2+i), (2α−1)(2−i)) = (2α−1)

Indeed for the last equality “⊆” is obvious as each generator is a multiple of 2α − 1 =
√
5, and for the reverse containment

note that 5(2α− 1)− (2α− 1)(2 + i)− (2α− 1)(2− i) = 2α− 1. So, overall, we get the factorization

(5) = (2α− 1, 2 + i)2(2α− 1, 2− i)2

Comparing norms gives 54 = N(p)2N(q)2. We can see that p is proper iff q is by taking conjugates, so we cannot have
N(p) = 1, hence N(p) = N(q) = 5, which also shows that they must be prime, thus giving that this is the complete factor-
ization of 5 in OK , and that it is ramified of index 2.

Now, suppose that P is a prime of OK lying over the prime P of OQ(
√
−5) = Z[

√
−5] which itself lies over the prime (p)

of Z. Then e(P/(p)) = e(P/P )e(P/(p)). If p ̸= 2, 5, then e(P/(p)) = 1, so e(P/P ) = 1 and P is unramified. If p = 2, 5,
then e(P/(p)) = 2 as we’ve shown. But the discriminant of Z[

√
−5] is −20, so p ramifies here as well, giving e(P/(p)) > 1.

On the other hand, the extension is of degree 2, so we must have e(P/(p) ≤ 2, whence e(P/(p)) = 2 and e(P/P ) = 1. So, in
any case, we get that P is unramified, and so the extension K/Q(

√
−5) is totally unramified.

Finally, if we show thatQ(
√
−5) has class number 2, then we are done, as the Hilbert class field must containK but is also

a degree two extension of Q(
√
−5), and so would equal K . But we know the ring of integers is Z[

√
−5] and the discriminant

is ∆ = −20, so the Minkowski bound is
2!

22

(
4

π

)1

| − 20|1/2 < 3

So the class group can be represented by (1) and primes lying over 2. For this we factor x2 + 5 ≡ (x+ 1)2 (mod 2), so

(2) = (2, 1 +
√
−5)2

in Z[
√
−5]. So, we seek to show that (2, 1+

√
−5) is not principal, for which it suffices to show thatN(a+ b

√
−5) = 2 has no

solutions. But this is obvious, as a2+5b2 = 2 has no integer solutions. So, indeed, the class number is 2 and we have exhibited
its Hilbert class field.
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