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Exercise (2.1.1).

Proof. Notice that each f ∈ A with nonzero constant term is a unit. Indeed, after multiplying by an element of k, we may
assume that the constant term is 1. I.e. f = 1 + gT for some g ∈ A. Then, since A is T -adically complete, we have that

∞∑
k=0

(−gT )k

converges to some h ∈ A. But then hf = h(1 + gT ) = 1 directly, so f is invertible.
It is also clear that {0A, TA} ⊆ Spec(A), and I claim this list is complete. Indeed, suppose P ∈ Spec(A) is nonzero. Then

it contains some nonzero element which can be factorized as T rf for some f with nonzero constant term. But we’ve shown
that f is a unit, so P contains T r , and since it’s prime, it contains T . But TA is maximal, so P = TA as desired.

Exercise (2.1.2).

Proof. Let m ∈ Spec(B) be a closed point, i.e. a maximal ideal of B. Then we can take the composition:

A
φ−→ B → B/m

Then B/m is a finitely generated k-algebra and a field, so it’s a finite field extension (Zariski Lemma). So, each element of A
maps to an algebraic element over k. I.e. the image of A in B/m is a finitely generated k-algebra that is algebraic over k. Thus,
it must be a field, so A/φ−1(m) is a field, whence φ−1(m) is maximal. So, (Specφ)(m) = φ−1(m) is a closed point.

Exercise (2.1.3).

Proof. Since A/m is a finite field extension of R, it is either R or C. So, it injects into C, giving:

R[X,Y ] → A→ A/m ↪→ C

Then the images of 1, x, x2 in C are linearly dependent over R, so there is some a, b, c ∈ R with

a+ bx+ cx2 ∈ m

If c is nonzero, dividing by it gives the desired quadratic in x contained in m. Otherwise, we must have b nonzero, so dividing
by b and squaring gives the desired quadratic. The same argument applies to y. The same argument applied to 1, x, y gives the
final claimed relation:

f = αx+ βy + γ ∈ m

and if (α, β) = (0, 0), then γ ∈ m and γ ̸= 0, which contradicts properness of m.
We’d like to show m = fA. WLOG, assume β ̸= 0. It suffices to show that (f,X2 + Y 2 +1) is maximal in R[X,Y ], where

we also use f to denote αX + βY + γ. We’ll take the quotient iteratively. First, we claim that R[X,Y ]/(f) ∼= R[t]. Indeed,
consider the map ψ : R[X,Y ] → R[t] given by:

X 7→ t and Y 7→ −αt+ γ

β

Clearly f ∈ kerψ and ψ surjects. Further, if g ∈ kerψ, then by polynomial division (in R[X][Y ]), we can write:

g(X,Y ) = f(X,Y )q(X,Y ) + h(X)

since β is a unit. Thus ψ(h) = 0, but ψ(h) = h(t) is zero inR[t] iff it is zero inR[X]. I.e. g = fq ∈ (f). So,R[X,Y ]/(f) ∼= R[t],
and under this isomorphism,X2+Y 2+1maps to a quadratic p(t) (it is actually quadratic since the leading coefficient is positive,
hence nonzero).

So, finally, to show that (f,X2+Y 2+1) is maximal, it suffices to show that p is irreducible, i.e. that it has no root. Suppose
it has a root u. Then we have the composite:

v : R[X,Y ] → R[t] → R

where the final map is evaluation t 7→ u. Under the composition, we have X2 + Y 2 + 1 7→ p(u) = 0, but this would mean
that 0 = v(X)2 + v(Y )2 + 1 ≥ 1, which is a contradiction. Hence p is irreducible and (f,X2 + Y 2 + 1) is maximal, so that



m = fA.

The above proof shows in general that given α, β, γ ∈ R with (α, β) ̸= (0, 0), that (αx + βy + γ) is maximal in A.
Multiplying the vector (α, β, γ) does not change this ideal, so we indeed get a map P2

R \ {(0 : 0 : 1)} → Spec(A). We’ve
also shown that this map surjects on the set of maximal ideals. So, we only need to show it injects. In other words, suppose
m = (αx + βy + γ) = (α′x + β′y + γ′) for some (α : β : γ) ̸= (α′ : β′ : γ′] ∈ P2

R \ {[0 : 0 : 1]}. We have two cases. First,
suppose (α, β) and (α′, β′) are independent in R2. Then they form a basis, so we can find a, b, c, d ∈ R with:(

α α′

β β′

)(
a b
c d

)
=

(
1 0
0 1

)
Then m contains:

a(αx+ βy + γ) + c(α′x+ β′y + γ′) = x+ r

for a constant r ∈ R. Similarly, m contains:

b(αx+ βy + γ) + d(α′x+ β′y + γ′) = y + s

for a constant s ∈ R. But then, in A/m we have x 7→ −r and y 7→ −s, which gives:

0 = x2 + y2 + 1 7→ r2 + s2 + 1 ≥ 1

which is a contradiction.
So we must have that (α, β) and (α′, β′) are linearly dependent. Since they are nonzero, there is a constant cwith (α, β) =

c(α′, β′). We cannot have γ = cγ′, since the two points are distinct in P2
R. But then m contains:

(αx+ βy + γ)− c(α′x+ β′y + γ′) = γ − cγ′

which is nonzero, contradicting the fact thatm is proper. So, we’ve exhausted all possibilities and must have that the map is in-
jective. Thus, the association (α : β : γ) 7→ (αx+βy+γ)A is a bijection between P2

R\{(0 : 0 : 1)} and the maximal ideals ofA.

As claimed, the map R[X] → R[X,Y ] → A is injective. Indeed, any element of the ideal (X2 + Y 2 + 1) necessarily has
degree at least 2 in Y , while any polynomial inX has degree zero in Y . The morphism is also finite since we have a surjection
of R[X]-modules R[X]2 → A mapping (u, v) to u + yv. Indeed, given g ∈ A, we can lift it to g(X,Y ) ∈ R[X,Y ], and by
polynomial division we can write

g(X,Y ) = (X2 + Y 2 + 1)q(X,Y ) + Y r(X) + s(X)

so that after mapping into A we get:
g = yr(x) + s(x)

which is in the image of the R[X]-module map above.
So now, if p is a non-maximal prime ofA, then I claim p∩R[X] is a non-maximal prime ofR[X]. Indeed, letm be a maximal

ideal (strictly) containing p. Then, from the previous problem, R[X] ∩ m is maximal and contains R[X] ∩ p. But we cannot
have R[X] ∩ p = R[X] ∩m since A is an integral extension of R[X], which therefore satisfies incomparability. So R[X] ∩ p is
strictly contained in R[X] ∩m, and therefore cannot be maximal.

But R[X] is a PID, so any nonzero prime is maximal, and therefore R[X] ∩ p = 0. Now let g ∈ p. Then g ∈ A, which is
integral over R[X], so there is a relation:

gn + an−1g
n−1 + · · ·+ a0 = 0

where each ai ∈ R[X]. We may further assume that n ≥ 1 is as small as possible. Now notice that a0 is a multiple of g, so
a0 ∈ R[X] ∩ p = 0, so a0 = 0. If n > 1, this gives

gn−1 + an−1g
n−2 + · · ·+ a1 = 0

contradicting minimality of n. So instead we get n = 1, whence g = −a0 = 0. So p = 0, and there is at most one non-maximal
prime of A.

Exercise (2.1.4).
First, a geometric argument:
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Proof. Notice that p is an irreducible component of SpecA. Then, if f ∈ Ap, then f is the germ of a function defined locally on
p, and if f ∈ pAp, then it vanishes on all of p. Hence, f vanishes everywhere, so by the Nullstellensatz, some power of it is zero.

Now, since A is reduced, only the zero function vanishes on all of SpecA. Hence, if f is a zerodivisor, then there is some
nonzero g with fg = 0, and g being nonzero implies that g does not vanish everywhere. Pick an irreducible component Z that
g does not vanish on. Then

Z = Z ∩ Spec(A) = Z ∩ V (fg) = Z ∩ (V (f) ∪ V (g)) = (Z ∩ V (f)) ∪ (Z ∩ V (g))

By irreducibility, we must have V (f) ⊇ Z , so f vanishes on all of Z .

Now, the formal algebra:

Proof. Note that pAp is the unique prime ofAp since p is minimal. Hence, the nilradical ofAp, as the intersection of the primes
of Ap, is precisely pAp. Hence, if f ∈ p is nonzero, then its image is in pAp, so there is some n such that f

n

1 = 0. I.e. there is
some u /∈ p with fnu = 0, so f is a zerodivisor.

Now, letA be reduced, and let f be a zerodivisor, so there is some nonzero g with fg = 0. Then notice that g is not contained
in every minimal prime, since otherwise it would be contained in⋂

p minimal prime

p =
⋂

p prime

p =
√
0 = 0

since A is reduced. So, there is some minimal prime p with g /∈ p. But fg = 0 ∈ p, so f ∈ p by primality.

Exercise (2.1.5).

Proof. Note that injectivity at the beginning and surjectivity at the end are obvious. So, we need to see exactness in the middle.
Further, any multiple of P1(T1) is clearly in the kernel, so the image is contained in the kernel. Finally, let f ∈ k[T1, . . . , Tn]
be in the kernel. Write it as a polynomial in T2, . . . , Tn with coefficients in k[T1], as:

f =
∑
i

a(T1)T
i

where i runs over multi-indices and T i denotes T i22 · · ·T inn . Then, the image in k1[T2, . . . , Tn] is:∑
i

a(T1)T
i

which must be zero. I.e. each coefficient must be zero, so a(T1) ∈ P1(T1)k[T1]. Thus, factoring out P1(T1) from each summand
shows that f is a multiple of P1(T1).

Now, we induct on n. Indeed, P1(T1) ⊆ m, so m corresponds to a maximal ideal m1 of k1[T2, . . . , Tn]. Let p2(T2) generate
m1 ∩ k1[T2]. Then, lift this back to a polynomial P2(T1, T2) ∈ k[T1, T2]. Notice that if f ∈ k[T1, T2] ∩m, then the image is in
m1 ∩ k1[T2], so f is contained in (P1, P2). Let k2 = k1[T2]/(p2) and continue in this way to get the desired sequence.

Exercise (2.1.6).

Proof. Let Z be a closed subspace of a quasi-compact space X . Let {Ui} be an open cover of Z . Then, each Ui is of the form
U ′
i∩Z for someU ′

i open inX . Notice that {U ′
i}∪{X\Z} is an open cover ofX . This has a finite subcover, sayU ′

1, . . . , U
′
n, X\Z

(if this last set is not needed, it doesn’t hurt to have it anyway). Then U1, . . . , Un is a cover of Z , so indeed any open cover of
Z has a finite subcover. I.e. Z is quasi-compact.

Now, let {Ui} be an open cover of SpecA. By definition, each Ui is the complement of V (Ji) for some ideal Ji of A. Then,
we get:

V

(∑
i

Ji

)
=
⋂
i

V (Ji) = Spec(A) \

(⋃
i

Ui

)
= ∅

I.e. this ideal is not contained in any prime ideal, and so cannot be proper. I.e.∑
i

Ji = A
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whence we have an equation: ∑
i

ji = 1

where ji ∈ Ji and ji = 0 for all but finitely many indices. But then if S is the support of this sum (the set of i where ji ̸= 0),
then: ∑

i∈S
ji = 1 =⇒

∑
i∈S

Ji = A

So: ⋃
i∈S

Ui = Spec(A) \
⋂
i∈S

V (Ji) = Spec(A) \ V

(∑
i∈S

Ji

)
= Spec(A) \ V (A) = Spec(A)

so that we have found a finite subcover. I.e. SpecA is quasi-compact.

Exercise (2.1.7).

Proof. It suffices to describe the irreducible closed subsets of SpecZ[T ], which are of the form V (P ) for P ∈ SpecZ[T ]. Indeed,
any closed set is then a finite union of these irreducible closed sets. We will organize this by htP :

The only height zero prime is (0), and V (0) = A1
Z is the whole space.

The height one primes are of the form (f) where f ∈ Z[T ] is irreducible (over Q, say), or of the form (p) for p a rational
prime. I’m not sure what to say (geometrically) about V (f), but note that V (p) = A1

Fp
.

Finally, the height two primes are of the form (f, p) for p a prime and f irreducible when reduced mod p (i.e. over Fp).
These are the closed points V (f, p).

Exercise (2.1.8).

Proof. In other words, we would like to show that if φ : A → B is integral and m ∈ SpecB is maximal, then φ−1m is
maximal. Consider the induced map φA/φ−1m → B/m. This is an injective integral extension (since the reduction of the
same polynomials work) from a domain to a field. So, we must have that A/φ−1m is also a field, i.e. φ−1m is maximal as
claimed.

The second claim is false. Indeed, if O is the ring of integers in a number fieldK and p is an unramified non-inert prime of
the extension O/Z lying over p, then the preimage Spec(φ)−1(pZ) is the set of primes lying over p, which is not a singleton
by choice. I.e. the preimage of a closed point is not a closed point (while Z → O is integral).

Directly, each element b⊗ 1 is integral over Ap since it is integral over A and the same polynomial works. So, the integral
closure of the image contains each simple tensor b⊗ 1 and each 1⊗ (a/s), so it must be the full ring.

That T is multiplicative is obvious. To see that T−1B ̸= 0, it suffices to notice that 0 /∈ T since φ is injective and 0 /∈ A \ p.
So, lastly we show the isomorphism. Notice that we have an A-bilinear map B ×Ap → T−1B given by:(

b,
a

s

)
7→ φ(a)b

φ(s)

which thus factors through a map f : B ⊗A Ap → T−1B. We also have a map B → B ⊗A Ap given by b 7→ b ⊗ 1. If
t = φ(a) ∈ T , where a /∈ p, then it maps to t⊗ 1, which satisfies:

(t⊗ 1)

(
1⊗ 1

a

)
=

(
φ(a)⊗ 1

a

)
= a ·

(
1⊗ 1

a

)
= 1 · 1

so that each element of T maps to something invertible. So, the map factors through a map g : T−1B → B ⊗A Ap. These are
the desired isomorphisms. Indeed, for b/t ∈ T−1B:

f(g(b/t)) = f((b⊗ 1)(t⊗ 1)−1) =
b

1

(
t

1

)−1

= b/t

so this composition is the identity. For a simple tensor b⊗ (a/s), we have:

g(f(b⊗ (a/s))) = g

(
φ(a)b

φ(s)

)
= (φ(a)b⊗ 1)(φ(s)⊗ 1)−1 = a(b⊗ 1)[s(1⊗ 1)]−1 = a(b⊗ 1)(1⊗ (1/s)) = b⊗ (a/s)

and so is identity on simple tensors, and hence on all of the domain. So, f and g do indeed establish the isomorphism.
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This gives the final claim. Indeed, given p ∈ SpecA, we have the square:

A B

Ap B ⊗A Ap = T−1B

Letm be any closed point in SpecT−1B. Then, the image along the bottom arrow is a closed point in SpecAp, which therefore
must be pAp, as this is the unique closed point. Taking the further image along the localization map thus gives the ideal p ∈
SpecA. But since this diagram commutes, the image in SpecB of m gives a point of m′ ∈ SpecB such that Spec(φ)(m′) = p
as desired.

Exercise (2.1.9).

Proof. First, note that since A is a finite k-module, the extension is integral. Let p ∈ SpecA; then it is contained in some
maximal ideal m ∈ SpecA. Then p ∩ k and m ∩ k must be primes in k, i.e. they must both be zero. So, they lie over the same
prime, and since integral extensions satisfy incomparability, the containment p ⊆ m implies p = m. So, indeed every prime is
maximal.

Now, suppose SpecA is has at least d + 1 elements for d = dimk(A). Then choose distinct prime (maximal) ideals
m1,m2,m3, . . . ,md+1. Let

Ir =

r⋂
j=1

mj

Then we have the descending chain:
A ⊇ I1 ⊇ I2 ⊇ I3 ⊇ · · · Id+1

Each of these containments must be proper. Indeed, otherwise we would have

m1 · · ·mr ⊆ Ir ⊆ mr+1

But then, since mr+1 is prime, it contains some mi, whence mr+1 = mi by maximality, contrary to assumption.
On the other hand, each of these is a k-submodule of A, i.e. a k-vector space. Since the containments are proper, we must

have that dimk(Ir+1) < dimk(Ir). But dimk(A) = d, so this is a contradiction, as we cannot have a strictly decreasing se-
quence of length d+ 2 among the integers {0, . . . , d}. Thus, we must have |SpecA| ≤ dimk(A).

Note that k[T1, . . . , Td] is a UFD, and a nonzero polynomial is a unit iff it is a constant. Hence, Euclid’s proof shows
that there are infinitely many prime elements and so infinitely many primes. Explicitly: note that T1 is prime, so there is at
least one nonzero prime. Suppose that π1, . . . , πn is a list of nonzero primes, so that none of them may be constant. Then
a = π1 · · · pin + 1 factors as a nonempty product of primes since it has positive degree. None of these primes can be any πi,
else πi divides 1. So, no finite list of primes of positive degree is complete, hence there are infinitely many primes.

We’ve already shown one direction, so now suppose that A is not a finite k-module. By Noether normalization, we
can find a finite injective morphism k[T1, . . . , Td] → A. We must have d ≥ 1 since we’ve assumed A is not finite over
k. But now, the extension A over k[T1, . . . , Td] satisfies lying over, so we have at least one prime of A over each prime
of k[T1, . . . , Td]. In fact, this association is injective since each prime of A lies over a unique prime of k[T1, . . . , Td]. So,
|SpecA| ≥ |Spec k[T1, . . . , Td]| = ∞ as desired.

Exercise (2.2.1).

Proof. Following the explicit construction given, the sheafification of the constant presheaf is the sheaf A † where A †(U) is
the set of functions f : U →

⊔
x∈U Ax given locally by sections. Clearly Ax = A, and the fact that f is locally given by

sections means that for each x ∈ U , there is some open V and a ∈ A (V ) = A with f(x) = ax = a for each x ∈ V . Another
way to state this is that f : U → A is continuous when A is given the discrete topology. I.e. A † is the sheaf of continuous
functions from subsets of X to A with the discrete topology, i.e. locally constant functions X → A. Finally, we can interpret
this as A †(U) being the direct product of copies of A in bijection with the connected components of U .

If every open subset of X is connected, then this description shows that A = A †, so A is a sheaf. Conversely, if there is
some U ⊆ X that is the disjoint union of open subsets V,W of X , then A is not a sheaf. Indeed, A is nontrivial, so we can
choose two distinct elements a, b ∈ A. Then a ∈ A (V ) and b ∈ A (W ), and these sections agree on overlaps since V ∩W = ∅,
but there is no x ∈ A (U) with x|V = x = a and x|W = x = b. So, A does not satisfy gluing.
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Exercise (2.2.2).

Proof. Let A = {x ∈ X : sx = tx}. Suppose that x ∈ A. Then there is an open neighborhood U of x with s|U = t|U . But then
for any y ∈ U , we have

sy = (s|U )y = (t|U )y = ty

so y ∈ A. Thus U ⊆ A and we’ve shown that each x ∈ A is contained in an open set contained in A, so A is open as
claimed.

Exercise (2.2.3).

Proof. I’ll come back to this one.

Exercise (2.2.4).

Proof. Name the maps:
0 → F ′ φ−→ F

ψ−→ F ′′ → 0

Recall that this implies that for each x ∈ X that we have an exact sequence:

0 → F ′
x
φx−−→ Fx

ψx−−→ F ′′
x → 0

Now, exactness at F ′(X) is obvious, since a map of sheaves is injective iff it is injective on each open set. So, we would
like to show exactness at F (X). First, let s ∈ F ′(X). Then for each x ∈ X we have:

[ψ(X)(φ(X)(s))]x = ψx([φ(X)(s)]x) = ψx(φx(sx)) = 0

since ψx◦φx = 0. Hence the image of φ(X) is contained in the kernel of ψ(X). Conversely, suppose s ∈ ker(ψ(X)) ⊆ F (X).
Then, again, for each x, we have

ψx(sx) = [ψ(X)(s)]x = 0

So, sx ∈ ker(ψx) = im(φx). Hence, for each x we can find an open neighborhood U(x) of x and a section t(x) ∈ F ′(U(x))
with φ(U(x))(t(x)) = s|U(x). We would like to glue these to a single global section, and so we need to see that they agree on
overlaps.

To that end, let x, y ∈ X , let a = t(x)|U(x)∩U(y), and let b = t(y)|U(x)∩U(y). If U(x)∩U(y) = ∅, then we must have a = b,
and there is nothing to show. Otherwise, let z ∈ U(x) ∩ U(y). Then we have:

φz(az) = φz(t(x)z) = [φ(U(x))(t(x))]z = (s|U(x))z = sz

and similarly:
φz(bz) = φz(t(y)z) = [φ(U(y))(t(y))]z = (s|U(y))z = sz

So, φz(az) = φz(bz) and by injectivity of φz we get az = bz . Since this is true for all z ∈ U(x)∩U(y), we get that a = b, and
so the t(x) do indeed agree on overlaps. Hence they glue to a single section t ∈ F ′(X) with t|U(x) = t(x).

But then we are finished, for if x ∈ X , then:

[φ(X)(t)]x = φx(tx) = φx((t|U(x))x) = φx(t(x)x) = [φ(U(x))(t(x))]x = (s|U(x))x = sx

and so φ(X)(t) = s since they are equal on all stalks. I.e. s is in the image of φ(X).

Exercise (2.2.5).

Proof.

Exercise (2.2.6).

Proof.

Exercise (2.2.7).

Proof.

Exercise (2.2.8).

Proof.
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Exercise (2.2.9).

Proof.

Exercise (2.2.10).

Proof.

Exercise (2.2.11).

Proof.

Exercise (2.2.12).

Proof.

Exercise (2.2.13).

Proof.

Exercise (2.2.14).

Proof.

Exercise (2.3.1).

Proof.

Exercise (2.3.2).

Proof. Let i : U → X be the inclusion map, so that we wish to show i# : A → B is flat. It suffices to show this locally. That
is, for q ∈ SpecB = U and p = i(q) ∈ SpecA, we wish to show that Ap → Bq is flat. But this is the map i#q : Uq → Xi(q),
which is an isomorphism since U is an open subscheme. Isomorphisms are clearly flat, so the claim is shown.

Exercise (2.3.3).

Proof. Notice that if p ∈ F , then p ⊇ I tautologically, and so p ∈ V (I) by definition. I.e. we immediately have F ⊆ V (I), and
since V (I) is closed, this gives F ⊆ V (I). We wish to show the reverse.

Conversely, we have that F is a closed set, so it is of the form V (J) for some ideal J . Then:

J ⊆
√
J =

⋂
p∈V (J)

p =
⋂
p∈F

p ⊆
⋂
p∈F

p = I

where the inclusion comes from the fact that we are intersecting over a subset. So, by applying V , we get: F = V (J) ⊇ V (I),
as desired.

Any prime p ∈ im(f) contains kerφ, so im(f) ⊆ V (kerφ), and since the latter is closed, we have im(f) ⊆ V (kerφ).
Conversely, again write im(f) as V (J) for some J ∈ SpecA. Then, for any prime p ∈ SpecB, we have f(p) ∈ V (J), i.e.
φ−1p ⊇ J . Thus, φ(J) ⊆ p. Since this is true of any prime, φ(J) is contained in their intersection, i.e. φ(J) ⊆

√
0, and so

J ⊆
√
kerφ. But then V (J) ⊇ V (kerφ) as desired.

When we have φ : A → Ap for some p ∈ SpecA, then on the one hand im f is precisely the set of primes contained in p.
On the other hand, we have kerφ = {a ∈ A : au = 0 for some u /∈ p} ⊆ p. So, there is some subideal I of p such that the
lattice of ideals containing I corresponds (bijectively, inclusion-preserving) to the closure of the lattice of ideals contained in
p.

Exercise (2.3.4).

Proof.

Exercise (2.3.5).
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Proof. Let A = OY (Y ) be the global sections on Y and let X = SpecA. We will show that Y ∼= X , and hence is affine as
claimed.

Notice that OX(X) = A. In particular, we have the identity ring homomorphism i : OY (Y ) → OX(X), and this gives rise
to a morphism f : X → Y of schemes with ρ(f) = i since ρ is surjective by assumption. Similarly, since X is affine, we can
apply Proposition 3.25 directly (with the roles of X and Y reversed). That is, for the identity map j : OX(X) → OY (Y ), we
get a morphism g : Y → X with ρ(g) = j since ρ is also surjective in this case. Now, we use functoriality of ρ. Namely, we
have:

ρ(g ◦ f) = ρ(f) ◦ ρ(g) = i ◦ j = idOX(X) = ρ(idX)

But since X is affine, ρ is also injective, so we get that g ◦ f = idX . Similarly, we have

ρ(f ◦ g) = ρ(g) ◦ ρ(f) = j ◦ i = idOY (Y ) = ρ(idY )

However, we do not automatically know that ρ is injective in this case: the assumption only gives us this for maps X → Y
with X affine, while we have a map Y → Y and are trying to show Y is affine. So, instead, let us work locally. Namely, let
U ⊆ Y be an affine chart, and let ι : U ↪→ Y be the inclusion. Then,

ρ(f ◦ g ◦ ι) = ρ(ι) ◦ ρ(g) ◦ ρ(f) = ρ(ι) ◦ idOY (Y ) = ρ(ι)

But now, we do have injectivity, since U is affine. I.e. we get ι = f ◦ g ◦ ι. Written alternatively, we have that f ◦ g and the
identity map on Y agree when restricted to any affine chart U . Since these form a cover, we get that these global sections are
equal everywhere, i.e. f ◦ g = idY . Thus, we have shown that f, g furnish an isomorphism between X and Y as desired.

Exercise (2.3.6).

Proof.

Exercise (2.3.7).

Proof. Note that x ∈ X(k) means that x : Spec k → X is a section of the structure morphism X → Spec k. Thus, f(x) is
shorthand for f ◦ x : Spec k → Ank . The identification of Ank (k) with kn is as follows: given a section t : Spec k → Ank , we get
a map t# : k[T1, . . . , Tn] → k, and we identify t with the tuple (t#(T1), . . . , t#(Tn)). So, in our case, f(x) corresponds to the
point whose ith coordinate is:

(f ◦ x)#(Ti) = x#(f#(Ti)) = x#(φ(Ti)) = x#(fi) = fi(x)

as claimed.

Exercise (2.3.8).

Proof. The first claim is immediate. Indeed, if x ∈ X , then since the fi,x generate OX,x, at least one of them cannot be in the
maximal ideal of this local ring. That is, fi /∈ mX,x for some i. But then x ∈ Xfi for this i, so X is the union of the Xfi .

Now, note that if f ∈ OX(X) for any scheme X , then there is some g ∈ OX(Xf ) with (f |Xf
)g = 1. That is, f |Xf

is a
unit. This is clear: for p ∈ Xf , we have fp is invertible, so there is some open U containing p and some g(p) ∈ OX(U) with
(f |U )g(p) = 1. Gluing these gives the g we seek.

For i ∈ {0, . . . , n}, let Ai = A[uij ] for variables uij with j ∈ {0, . . . , n} \ {i}. That is, each Ai is a polynomial ring over
A in n variables. Define the ring homomorphisms φi : Ai → OXf

(Xf ) by φi(uij) = (fi|Xfi
)−1(fj |Xfi

). By the note above,
this is well-defined, since fi|Xfi

is invertible. These induce morphisms Fi : Xfi → SpecAi.
Notice that

D+(Ti) = SpecA[T0, . . . , Tn](Ti) = SpecA

[
T0
Ti
, . . . ,

Tn
Ti

]
which has a clear isomorphism with SpecAi given by uij 7→ Tj/Ti. Via these isomorphisms, we can extend our maps to
Fi : Xfi → PnA by composing with the inclusion maps.

Finally, we will glue these maps to get a single morphism f : X → PnA. It is clear from the construction that f satisfies the
desired properties.

In the case that A is a field and x ∈ X(A) is a rational point, we can write fi(x) for the image of fi,x in OX,x/mX,x = A.
Then, via the identification of the A-rational points of PnA with equivalence classes of (n + 1)-tuples in A, we have f(x) =
[f0(x) : · · · : fn(x)].

Exercise (2.3.9).
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Proof.

Exercise (2.3.10).

Proof. Let f ∈ OX(X) be a global section, and let Ui = D+(Ti) so that Ui ∼= SpecA[T0/Ti, . . . , Tn/Ti]. Fix some indices
i ̸= j. Then we have that the restriction of f to Ui can be expressed as a polynomial in the variables T0/Ti, . . . , Tn/Tj , so after
clearing denominators, we have:

g = T ai (f |Ui
)

for some g ∈ A[T0, . . . , Tn] that is not a multiple of Ti. But similarly, we can clear denominators in j, i.e.

T bj (f |Uj
) ∈ A[T0, . . . , Tn]

for some b. In the intersection, this implies:
T bj g = T ai

(
T bj (f |Ui∩Uj

)
)

which shows that T bj g is a multiple of T ai in A[T0, . . . , Tn]. By uniqueness of polynomial representation, we must have a = 0
since Ti divides neither Tj nor g. But this means that f |Ui

∈ A. Since i is arbitrary, this shows that f ∈ A, and since f was
arbitrary, this gives that OX(X) = A.

Now, note that if n = 0, then PnA = SpecA is affine. Conversely, suppose that PnA is affine, so it is isomorphic to SpecB
for some ringB. But thenA = OX(X) ∼= OSpecB(SpecB) = B, so we have PnA ∼= SpecA. We want to show that this implies
n = 0. One approach (using material from later sections) is to reduce to the case for fields. Namely, choosing an arbitrary
maximal ideal m of A (i.e. a closed point) with residue field k = A/m gives the following fibre product:

Pnk PnA

Spec k SpecA

where the right edge is the claimed isomorphism. But then the left arrow would also be an isomorphism, which is easily
disproved by counting. That is, an isomorphism of schemes induces in particular a homeomorphism of topological spaces, but
Spec k consists of a single point, while Pnk has at least two points for n > 0: both the zero ideal and the ideal generated by
T0 are homogeneous, prime, and do not contain the irrelevant ideal. So, we cannot have n > 0 and we conclude n = 0 as
desired.

Exercise (2.3.11).

Proof. Note that C is a subring of B, so the inclusion induces a map i : SpecB → SpecC . I claim that this restricts to a map
ProjB → ProjC . Note that if P ∈ ProjB, then it is a homogeneous prime ideal and i(P ) = P ∩C is also homogeneous, for
if f ∈ P ∩C , then each nonzero homogeneous component of f must have degree divisible by e by virtue of f being in C , and
each such component is therefore in P ∩ C as well.

We would now like to also demonstrate that P ∩ C does not contain C+.

Exercise (2.3.12).

Proof.

Exercise (2.3.13).

Proof.

Exercise (2.3.14).

Proof. Note that we’ve already seen that affine schemes are quasi-compact (exercise 2.1.6). A topological space that is the finite
union of quasi-compact subspaces is itself clearly quasi-compact, so one direction is complete: a scheme that is a finite union
of affine schemes is quasi-compact. Conversely, supposeX is a quasi-compact scheme. By definition,X has an open covering
by affine schemes, and by quasi-compactness, this can be reduced to a finite subcover. So, the claim is shown.

Exercise (2.3.15).
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Proof. SinceX is quasi-compact, we can write it as a finite union of affine schemes, sayX =
⋃n
i=1 Ui for Ui = SpecBi. Then,

the compositions Ui → X → SpecA induce maps φi : A → Bi for each i; in fact, since the map X → SpecA is induced by
idA, we have that φi is just the restriction map ρX,Ui . We wish to show that f(X) is dense in SpecA, i.e. we want to compute
the closure of f(X). By (exercise 2.3.3) we know that f(Ui) = V (kerφi), and so:

f(X) = f

(
n⋃
i=1

Ui

)
=

n⋃
i=1

f(Ui) =

n⋃
i=1

f(Ui) =

n⋃
i=1

V (kerφi) = V

(
n⋂
i=1

kerφi

)
= V (0) = SpecA

We’ve used multiple facts here. Trivially, we’ve used that images commute with unions and that closures commute with finite
unions. Less trivially, we’ve noted that

⋂n
i=1 kerφi = 0. This is in fact just the sheaf condition. For if g ∈

⋂n
i=1 kerφi, then

g|Ui
= φi(g) = 0, so g is zero on an open cover, and hence globally zero.

Exercise (2.3.16).

Proof. One direction is trivial. If every affine open subscheme of X is Noetherian, then given a point of X , pick any of its
affine open neighborhoods; by assumption this is Noetherian, and so X is locally Noetherian. Now suppose that X is locally
Noetherian, and let U = SpecA be an affine open subscheme. Since X is locally Noetherian, each x ∈ U has a Noetherian
neighborhood ofX . Since open subschemes of Noetherian schemes are Noetherian, we may further assume that each x has an
open Noetherian neighborhood of U . But affine schemes are quasi-compact, so we can cover U by finitely of these, and hence
U is Noetherian, as claimed.

Exercise (2.3.17).

Proof. Suppose f is a closed immersion. Then, topologically, identifying X with its image, we get that X ⊆ Y is a closed
subset. If U ⊆ Y is an affine open subset, then under this identification, the preimage of U under f is X ∩ U . This is a closed
subset of U , and since U is quasi-compact, so is X ∩ U . This shows that f is quasi-compact.

Suppose f is an open immersion and that Y is locally Noetherian. Making similar identifications as above, we have that
X ⊆ Y is open, U is affine, and we want to show that X ∩ U is quasi-compact. Since Y is locally Noetherian, the previous
exercise shows that U is Noetherian, and soX ∩U is an open subscheme of a Noetherian scheme, and hence itself Noetherian.
But this means it is the finite union of affine open subschemes–which are the Specs of Noetherian rings, but we do not use
this–and hence quasi-compact, as desired.

Now assume f is quasi-compact. Let {Ui} denote an affine open cover of Y . Then, note that Z = V (I ) can be computed
locally:

Z = V (I ) = {y ∈ Y | Iy ̸= OY,y} =
⋃
i

{y ∈ Ui | (I |Ui
)y ̸= OUi,y =

⋃
i

V (I |Ui
)}

So, to show that Z is a scheme, it suffices to show that each V (IUi
) is a scheme. In other words, replacing symbols, it suffices

to show the claim when Y is affine. Note that we may continue to assume f is quasi-compact since each Ui is open.
Now, with the assumption that Y = SpecA is affine, we have that f is determined by the map φ : A → OX(X). In

particular, for a prime p ∈ SpecA,

p ∈ Z ⇐⇒ Ip ̸= OY,p ⇐⇒ (kerφ)p ̸= Ap ⇐⇒ kerφ ⊆ p ⇐⇒ p ∈ V (kerφ)

So, Z = V (kerφ) (as topological spaces). In fact, as locally ringed spaces, Z ∼= Spec(A/ kerφ), since the canonical map
Spec(A/ kerφ) → SpecA = Y has image Z and the two agree on principal open subsets. Hence Z is a scheme.

Part d

Part e

Exercise (2.3.18).

Proof. Since X is an affine variety over k, we can write X = Spec k[x1, . . . , xn]/I for some ideal I . Let f1, . . . , fm be a set
of generators for I . Then, in the ring k[x0, x1, . . . , xn] obtained by adjoining one additional variable, we can homogenize each
fi to a polynomial gi by multiplying monomials of lower than maximal degree by an appropriate power of x0. That is, gi is
homogeneous, gi|x0=1 = fi, and x0 ∤ gi.
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Let J = (g1, . . . , gm), B = k[x0, . . . , xn]/J), and X = ProjB. I claim this is the desired space. From lemma 3.41, X is a
projective variety over k with support V+(J) ⊆ Pnk . Further, we have

D+(x0) ∼= SpecB(x0) = Spec(k[x0, . . . , xn]/J)(x0) = Spec k[x1, . . . , xn]/I

where the last claim follows from an isomorphism of rings. Namely, we have a map k[x1, . . . , xn] → (k[x0, . . . , xn]/J)(x0) by
mapping each xi to x−1

0 xi. Under this map, each fi maps to gi

x
deg gi
0

= 0 in the quotient ring, and so this factors through a map
from k[x1, . . . , xn]/I . The inverse of this map can be similarly defined by evaluating an element of (k[x0, . . . , xn]/J)(x0) at
x0 = 1. Under this evaluation, each gi/(xdeg gi0 )maps to fi, and so the map is well-defined to k[x1, . . . , xn]/I . This establishes
the desired isomorphism.

Exercise (2.3.19).

Proof. Let U be an open subset of SpecOK . Then U = SpecOK \ V (I) for some ideal I of OK . Since the class group of K
has finite order, we know that Ik = (f) is principal for some integer k > 0. I claim that U = D(f). Indeed, if p ∈ SpecOK ,
then p ∈ U iff p /∈ V (I) iff p ̸⊇ I . Since OK is a Dedekind domain, this is equivalent to p ∤ I , which is true iff p ∤ Ik = (f) iff
p ∈ D(f). This shows the claim.

From this it is clear that every open subscheme is affine, as U ∼= Spec(OK)f .

Exercise (2.3.20).

Proof. Notice that each σ ∈ G is an invertible map A→ A. Let i : G→ G denote the inversion map for notational coherence.
Then, taking preimages in the usual way, i(σ) induces a map SpecA → SpecA. Setting σ · x to be the image of x under this
induced map is a group action, for if x ∈ SpecA and σ, τ ∈ G, then

(σ ◦ τ) · x = i(σ ◦ τ)−1(x) = [i(τ) ◦ i(σ)]−1(x) = i(σ)−1(i(τ)−1(x)) = i(σ)−1(τ · x) = σ · (τ · x)

as desired. That inverses and the identity behave as expected is clear. Note that taking both inverses amounts to just taking
σ · x = σ(x), the image of x under the function σ.

Note that the map p : SpecA→ SpecAG is given by p(x) = x∩AG since we have an inclusion of rings. So, first suppose
that x1, x2 ∈ SpecA are such that there exists σ ∈ G with σ(x1) = x2. Then, explicitly, we have that

a ∈ p(x1) ⇐⇒ a ∈ x1 and a ∈ AG ⇐⇒ σ(a) ∈ σ(x1) and a ∈ AG ⇐⇒ a ∈ x2 and a ∈ AG ⇐⇒ a ∈ p(x2)

so p(x1) = p(x2).
On the other hand, suppose p(x1) = p(x2). From the above, we also have p(x1) = p(σ(x1)) for any σ. So, σ(x1) and x2

lie over the same prime of AG. Because A is integral over AG (see below), it suffices to show that σ(x1) contains x2 for some
σ by incomparability. By prime avoidance, it now suffices to show that

x2 ⊆
⋃
σ∈G

σ(x1)

This is what we will show. Let a ∈ x2, and consider

b =
∏
σ∈G

σ(a)

Then, one of the multiplicands is id(a) = a, so b ∈ x2 as well. But clearly each element of G would permute the terms in the
product and so leave b fixed. I.e. b ∈ AG as well, so b ∈ x2 ∩AG = p(x2) = p(x1) ⊆ x1. So, b ∈ x1, and by primality so is one
of the factors, say σ(a) ∈ x1. But then a ∈ σ−1(x1), which is what we wished to show. This completes the argument.

Now we show explicitly that A is integral over AG. Let a ∈ A, and consider

P (T ) =
∏
σ∈G

(T − σ(a))

This is a monic polynomial; it has a as a root, since one of the factors is T − id(a) = T − a; and the factors are permuted
by elements of G, so P ∈ A[T ] is fixed by G. In other words, each coefficient is in AG, and so we’ve constructed an integral
relation for a over AG as desired. Since integral extensions satisfy lying over, this also shows that p is surjective.

11



We show that p(D(a)) =
⋃
iD(bi) directly. Suppose x ∈ p(D(a)). Then x = y ∩ AG for some y ∈ D(a), i.e. some prime

y that does not contain a. Suppose, for contradiction, that bi ∈ y for each i. Then,

ad = −
∑
i

bia
i ∈ y

and by primality, we would conclude that a ∈ y, contrary to assumption. So, instead, there is some i for which bi /∈ y. Then
bi /∈ x since x ⊆ y, and so x ∈ D(bi). This shows one containment.

For the reverse, let x ∈
⋃
iD(bi), so there is some i for which bi /∈ x. Let y be such that p(y) = x, and suppose for

contradiction that σ(a) ∈ y for all σ. Then we can write b as a symmetric polynomial in these elements, and so bi ∈ y and of
course bi ∈ AG, so bi ∈ AG ∩ y = p(y) = x, contrary to assumption. So, instead, there is some σ for which σ(a) /∈ y, i.e.
a /∈ σ−1(y). But then σ−1(y) ∈ D(a), and so x = p(y) = p(σ−1(y)) ∈ p(D(a)), as desired. We’ve shown now that the image
under p of a principal open set is open (as a union of principal open sets), and since these form a base for the topology, this
shows that p is open.

For b ∈ AG, we have that

y ∈ p−1(D(b)) ⇐⇒ b /∈ p(y) ⇐⇒ b /∈ y ⇐⇒ y ∈ D(bA)

so that p−1(D(b)) = D(bA). Only the middle biconditional is non-obvious, so to spell it out, note that if b ∈ p(y) then clearly
b ∈ y since p(y) ⊆ y. Conversely, if b ∈ y, then since b ∈ AG, we get b ∈ y ∩ AG = p(y), as claimed. The equality
(AG)b = (Ab)

G is immediate, since for b ∈ AG, a fraction in Ab is fixed by G iff the numerator is fixed by G.
To see that G acts on the scheme p−1(V ), note that we’ve already demonstrated that it acts on SpecA as a scheme, and

so it suffices to show that for each σ ∈ G, the morphism of schemes σ|p−1(V ) : p−1(V ) → SpecA has image in the open
subscheme p−1(V ). But this is immediate; if p is a prime lying over a prime of AG, then each conjugate of p lies over the same
prime, and so is also in p−1(V ).

Finally, we wish to show the two stated rings are the same. If V = D(b) is a principal open subset, we are done, since:

OSpecA(p
−1(D(b)))G = OSpecA(D(bA))G = (Ab)

G = (AG)b = OSpecAG(D(b))

Otherwise, we’re still done since V =
⋃
iD(bi) for some collection of principal opens, and we obtain the result via gluing.

Exercise (2.3.21).

Proof. For the first claim, let p be as in the previous exercise. We showed already that for x ∈ SpecA and σ ∈ G that
p(σ(x)) = p(x), so p = p ◦ σ as desired. Now suppose f : SpecA → Z is any morphism of schemes with f ◦ σ = f for all
σ ∈ G. Let U = SpecB ⊆ Z be an open affine neighborhood. Then restricting f to f−1(U) gives a map f : f−1(U) → U
which is determined by the ring homomorphism f# : B → OSpecA(f

−1(U)). Note that for any σ ∈ G, we have σ ◦ f# = f#

by the corresponding property on f . So, the image of f# lies in the subring OSpecA(f
−1(U))G.

We would like to identify this with the sheaf of AG on an open subset, and we could do this if f−1(U) = p−1(V ) for some
open V . Clearly f−1(U) ⊆ p−1(p(f−1(U))), and since p is an open map, p(f−1(U)) is indeed open: so we only need equality.
For this, note that if y ∈ p−1(p(f−1(U))), then p(y) ∈ p(f−1(U)), so there is some z ∈ f−1(U) with p(y) = p(z). From
the previous, this means that there is some σ ∈ G with σ(z) = y. But then f(y) = f(σ(z)) = f(z) ∈ U , so y ∈ f−1(U) as
desired.

In other words, we now have a ring homomorphism

f# : B → OSpecA(p
−1(p(f−1(U))))G = OSpecAG(p(f−1(U)))

This defines a morphism of schemes gU : SpecAG|p(f−1(U)) → U ↪→ Z satisfying gU ◦ σ = gU since the corresponding
statement is true for g#U . Note that as U ranges over all open affines in Z , f−1(U) defines an open cover of SpecA, and
so p(f−1(U)) defines an open cover of SpecAG since p is open and surjective. So, we’ve defined morphisms on an open
cover, and as long as they agree on overlaps, we can glue them to a morphism g : SpecAG → Z . This is essentially automatic,
since eachmorphism comes solely from restricting f . But then since each gU isG-equivariant, so isG, as can be checked locally.

The argument here is essentially the same. If U is an open subscheme of SpecA that is G-equivariant, then the map
p|U : U → p(U) is also G-equivariant, and so satisfies the first part of the universal property for the quotient. Then, if
f : U → Z is alsoG-equivariant, then we can similarly pull back open subsets of Z to U and push them forward via p to define
a map p(U) → Z via gluing. This argument would then show that p(U) is the quotient U/G.
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This also follows from gluing the results of the previous exercise. However, in this case, there is no clear existing candidate
for the target scheme X/G, so we must construct the scheme itself via gluing (Lemma 3.33).

Let {Ui} denote the collection defined in the problem; that is, for each x ∈ X , there is an affine neighborhood of x that
is stable under G, and we let {Ui} denote this collection of affine neighborhoods. Each is affine, so we have a corresponding
collection of rings: Ui = SpecAi. Now, define Xi = Spec(AGi ) = (SpecAi)/G, for each i, and pi : Ui → Xi the projection
we’ve been considering. For a pair of indices i, j, define Xij = pi(Ui ∩ Uj) ⊆ Xi, and let fij : Xij → Xji be given by
fij = pj ◦ p−1

i .
Foremost, we need to see that each fij is well-defined. In particular, we’re not claiming that pi is invertible, even when

restricted to pi(Ui ∩ Uj), but rather that pj is constant on this preimage. Indeed, this is clear, for if pi(x) = pi(y), then there
is some σ ∈ G with σ(x) = y, whence pj(x) = pj(y) as well. Then, it is also the case that the collections {Xij}, {fij} satisfy
the conditions of Lemma 3.33. So, we define X/G to be the (Z-)scheme guaranteed by that lemma, and gi : Xi → X/G the
guaranteed maps.

Finally, we would like to justify the nameX/G. Let p : X → X/G be given by p(x) = gi(pi(x)) for any i such that x ∈ Ui.
This is well-defined, for if x ∈ Uj also, then

gi(pi(x)) = gj(fij(pi(x))) = gj(pj(x))

Now, if σ ∈ G, then for any x ∈ Ui, we have σ(x) ∈ Ui also since each Ui is G-equivariant, so:

p(σ(x)) = gi(pi(σ(x))) = gi(pi(x)) = p(x)

since pi ◦ σ = pi for each i. So, p ◦ σ = p as desired. Lastly, suppose we have a morphism f : X → Z with f ◦ σ = f for all
σ ∈ G. Then for x ∈ X , define h : X/G→ Z by h(p(x)) = f(x).

Again, we need to see that this is well-defined. Suppose p(x) = p(z). Then, if x ∈ Ui, z ∈ Ui also by invariance of each Ui.
So, we have

gi(pi(x)) = p(x) = p(z) = gi(pi(z))

Since each gi is an open immersion, this gives pi(x) = pi(z). Then, note that for each σ ∈ G, that f |Ui
◦ σ = f |Ui

, so this
restriction factors through the quotient. That, is there is a map hi : Ui/G = p(Ui) → Z with f |Ui = hi ◦ pi. Overall:

f(x) = f |Ui(x) = hi(pi(x)) = hi(pi(z)) = f |Ui(z) = f(z)

and so h, as above, is well-defined. But this completes the argument, for we’ve defined h such that f = h ◦ p, i.e. we’ve shown
that f factors through the quotient map, so X/G is indeed the quotient.

Exercise (2.3.22).

Proof. It is clear that n is an automorphism of k[T ] for each n, with inverse −n, and thus of A1
k . Now, suppose that U is an

open subset of A1
k . Then the complement of U is closed, so it is of the form V (I) for some ideal I , but since k[T ] is a PID, we

can write I = (f) for some polynomial f . Then V (I) is precisely the set of prime factors of f , with U being its complement.
If f ∈ k is a unit, then it has no prime divisors and U = A1

k . If f = 0, then every prime divides it, and so U = ∅.
Otherwise, V (f) is nonempty and finite; in particular, it contains some prime ideal (g(T )). But if (g(T +n)) /∈ V (f), then

(g(T + n)) ∈ U , and so (g(T + n − n)) = (g(T )) ∈ U , contrary to assumption. So, V (f) contains (g(T + n)) for every
n. Since we are in characteristic zero, (g(T + n)) = (g(T +m)) iff n = m, and so we have our contradiction, since V (f) is
supposed to be finite, but we have an injection Z ↪→ V (f) given by n 7→ (g(T + n)).

Now, note that the ring homomorphism φ : k ↪→ k[T ] induces a map p : A1
k → Spec k. Further, the ring map isZ-invariant,

since n · φ(a) = φ(a), since φ(a) is a constant and has no T -terms. So, p ◦ n = p for any n ∈ Z. Further, p has the universal
property of the quotient map of schemes. Indeed, let Z be any scheme and f : A1

k → Z a morphism with f ◦ n = f for all
n ∈ Z. Then, pick any z in the image of f , and pick an affine neighborhood U of z in Z . Then f−1(U) is a nonempty open
subset of A1

k , and I claim it is Z-stable. For if x ∈ f−1(U), then f(n(x)) = f(x) ∈ U , and so n(x) ∈ f−1(U) as well. But by
the previous claim, this forces f−1(U) = A1

k to be the whole space.
In other words, f factors through a map f : A1

k → U = SpecA (which I’m also denoting by f ). But this is precisely
determined by a map f# : A → k[T ], and the Z-invariance implies that f#(a)(T + n) = f#(a)(T ) for all n ∈ Z and a ∈ A.
In other words, each image is a constant polynomial, and so f# has image in k, whence f factors through p. But this is precisely
what we wished to show.

On the other hand, from exercise 2.2.14, we know that the quotient A1
k/Z of ringed topological spaces exists and has

underlying topological space homeomorphic to the quotient topological space A1
k/Z. In other words, choosing two elements

a, b ∈ k such that a− b /∈ Z, we have that the ideals (T −a) and (T − b)map to different points in the ringed topological space
quotient; in particular the ringed topological space has more than one point. But the topological space of Spec k is a single
point, and so the two are not the same as ringed topological spaces (or even as topological spaces).
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Exercise (2.4.1).

Proof. Note that an affine scheme SpecA is reduced (irreducible) iff A is reduced (has a unique minimal prime, respectively).
For each of the following, write P = Qe11 · · ·Qemm forQi distinct primes, which can be done since k[T1, . . . , Tn] is a UFD.Then,
by CRT, we can write

k[T1, . . . , Tn] ∼=
m⊕
i=1

k[T1, . . . , Tn]/(Q
ei
i )

Let A = k[T1, . . . , Tn]/(P ) for what follows.
Now, we have SpecA is reduced iff A is reduced. If P is squarefree, then each ei = 1, and the above isomorphism exhibits

the A as the direct sum of domains, which is reduced. Conversely, if P is not squarefree, then ei ≥ 2 for some i. Then P/Qi
is in k[T1, . . . , Tn] but not in (P ) and P 2/Q2 = (P/Q2)P ∈ (P ), so the image of P/Q is zero in the quotient and A is not
reduced.

Second, recall that primes in a direct sum correspond to the (disjoint) union of primes of each summand. So, ifm ≥ 2, then
(Q1) and (Q2) are distinct minimal primes of A, whence A is not irreducible. Conversely, ifm = 1, then any prime ideal of A
corresponds to a prime of k[T1, . . . , Tn] containing P = Qe11 , and so this prime containsQ1. Thus, (Q1) is the unique minimal
prime of A and so A is irreducible.

Finally, combining these, SpecA is integral iffm = 1 and e1 = 1, iff P = Q1 is irreducible.

Exercise (2.4.2).

Proof. Suppose y specializes to x. Then, choose an open affine U = SpecA containing x. We must have y ∈ U as well, else we
would have x ∈ {y} ⊆ X \ U . Then we recall that the map SpecOX,x → X is given by choosing any open affine containing
x and factoring the localization map. In particular, for this U , we get that the image of SpecOX,x → X contains the image of
the morphism induced by the localization map A→ Ax, which is all primes of A contained in x. But the statement that x is a
specialization of y is precisely that x ⊇ y as primes of A, and so y is in the image.

Conversely, suppose y is in the image of SpecOX,x → X . Then, if U = SpecA is any open affine containing x, we know
that the map factors through the open immersion U → X , and so y ∈ U . But then the map is given by localization of A at x,
and so we must have y ⊆ x as ideals of U , whence y specializes to x.

Exercise (2.4.3).

Proof. Note that the principal open subscheme D(t) is isomorphic to Spec((OK [T ])t) = Spec(K[T ]) since inverting the
uniformizer gives the field of fractions for a DVR.

Geometrically, recall that SpecOK is a two-point space, with the open (generic) point, and the closed point. Then, SpecOK [T ]
is a pair of lines, an ”open” line corresponding to SpecK[T ] and a closed line. The closed point (t, T ) is the origin of the closed
line, and we are asking for closed points of the open line that specialize to the origin. From this model, we should expect only
the origin of the open line will specialize to the origin, i.e. the point corresponding to the ideal (T ) inK[T ].

Now, let’s prove this algebraically. Let P ∈ SpecK[T ] be a closed point that specializes to (t, T ) in SpecOK [T ]. In other
words, we have P ∩ OK [T ] ⊆ (t, T ). Now, since K[T ] is a PID, we can write P = (f) for some f , and since P is maximal, it
is nonzero, and so f is irreducible. Clearing denominators, we have that af ∈ P ∩ OK [T ] for some a ∈ O×

K . Now, if f has a
nonzero constant term b ∈ K , then ab ∈ (t, T ) since af, T ∈ (t, T ). But ab is a unit, contradicting that (t, T ) is proper. I.e. we
must have that f(0) = 0, but then T | f . By irreducibility, we have that (f) = (T ), i.e. that P is the origin in SpecK[T ] as
claimed.

Exercise (2.4.4).

Proof. We associate toX a graphG = (V,E) defined as follows: for each irreducible componentXi, we define a vertex vi ∈ V ,
and ifXi ∩Xj ̸= ∅, then (vi, vj) ∈ E. Now, the claim we are trying to show is equivalent to saying thatX is connected if and
only if G is a connected graph.

First, suppose that X is connected. To show that G is connected, it suffices to show the following property: if V = S ⊔ T
is partitioned into any two nonempty subsets, then there is an edge (s, t) ∈ E with s ∈ S and t ∈ T . To see this, let S, T be as
stated, and let

W =
⋃
i∈S

Xi and Z =
⋃
i∈T

Xi

Since these are both finite nonempty unions and each Xi is closed, we have thatW and Z are nonempty and closed. But also
we have that X = W ∪ Z , and so by connectedness, these cannot be disjoint, i.e. W ∩ Z ̸= ∅. Any point in this intersection
lies in some Xi for i ∈ S and some Xj for j ∈ T . But then Xi ∩Xj ̸= ∅ and (i, j) ∈ E as desired.

Conversely, suppose that G is connected. Write X = W ⊔ Z for two disjoint closed subsets of X ; we wish to show that
one of them is empty. For each i, note that Xi = (Xi ∩W ) ∪ (Xi ∩ Z), and so by irreducibility, either Xi = Xi ∩W or
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Xi = Xi ∩ Z . In other words, each irreducible component is contained in at least one ofW or Z . Let S = {i : Xi ⊆ W} and
T = {i : Xi ⊆ Z}. We’ve shown that V = S ∪ T . In fact, S and T are disjoint, for if i ∈ S ∩ T , then Xi ⊆ W ∩ Z = ∅.
Suppose both S and T are nonempty. From the above equivalent condition for connectedness of a graph, we have that there is
some edge (s, t) with s ∈ S and t ∈ T . In other words, we have Xs ∩Xt ̸= ∅. But we have Xs ∩Xt ⊆ W ∩ Z = ∅. This is a
contradiction, and so we cannot have both S and T nonempty; WLOG assume S = ∅. Then T = V , so Xi ⊆ Z for all i, and
so Z = X andW = ∅, which is what we wished to show.

Now, supposeX is integral. We’ve already noted that this implies thatX is integral at x for each x ∈ X . Further, we have
that X is irreducible, so in the language above, V is a singleton. The graph on 1 vertex is certainly connected, and so X is
connected.

Conversely, supposeX is integral at each of its points and connected. ThenX is clearly reduced at each of its points since
domains are reduced, and so it suffices to show that X is irreducible. But note that being integral at each of its points implies
that each x ∈ X is contained in a unique irreducible component, and so in the language of graphs above, E = ∅. That is,
Xi ∩Xj = ∅ for all i, j. But now, we have a connected graph with no edges, and so we must have |V | ≤ 1, i.e. there is at most
one irreducible component. This component must be all of X , and so X is irreducible, and hence integral as desired.

Exercise (2.4.5).

Proof. Note that the connected component of X containing a point x ∈ X is the union of all connected subsets of X contain-
ing x. Thus, ifZ is any irreducible subset ofX , thenZ is connected, soZ is contained in the connected component of any x ∈ Z .

Now, supposeX is locally Noetherian, and letU be a connected component. We wish to showU is open, so let x ∈ U . Since
X is locally Noetherian, x has an open neighborhood that is the finite union of affine neighborhoods of Noetherian rings. Then
x is contained in one such neighborhood, say x ∈ V = SpecA where A is Noetherian. It now suffices to exhibit a connected
open subset of V containing x.

For this, note that there are only finitely many irreducible components in V . We induct on the number of such components
that do not contain x. If there are none, then each irreducible component of V overlaps (at x), and so by the previous problem,
V itself is connected and is of course open in V . So, suppose there is at least one irreducible component Z not containing x.
Then the complement of Z is open, so it is covered by principal open sets; choose f ∈ A so that x ∈ D(f) ⊆ V \ Z . The
irreducible components of D(f) are given by intersecting irreducible components of V with D(f); in particular Z does not
appear. So, in D(f), there are strictly fewer irreducible components that do not contain x. Finally, D(f) ∼= SpecAf is the
spectrum of a Noetherian ring, so induction applies and gives an open connected subsetW ⊆ D(f) containing x. ButD(f) is
open in V , and soW is open in V as desired.

Lastly, note that each irreducible component is contained in some connected component, and each connected component
contains at least one irreducible component. So, there is a surjection from the set of irreducible components to the set of
connected components. When X is Noetherian, there are only finitely many of the former and so only finitely many of the
latter.

Exercise (2.4.6).

Proof. Note that it suffices to prove the equivalence of (i) and (ii). Indeed, suppose we have done so, let X be a scheme, let
A = SpecOX(X), and apply the proven equivalence to the scheme SpecA. Then we conclude SpecOX(X) = SpecA is
connected iff OSpec(A)(SpecA) = A = OX(X) has no nontrivial idempotents, which is precisely (ii) iff (iii).

So now, suppose first that X is disconnected. Then we can write X = U ∪ V for disjoint open sets U and V . The sections
1 ∈ OX(U) and 0 ∈ OX(V ) trivially agree on the overlap U ∩ V = ∅. So we can glue them to a section f ∈ OX(X). Then
f ̸= 0 since the restriction to U is nonzero, and similarly f ̸= 1. But f2|U = (f |U )2 = 12 = 1 and f2|V = (f |V )2 = 02 = 0,
so f2 = f shows that OX(X) has a nontrivial idempotent.

Conversely, suppose that e ∈ OX(X) is a nontrivial idempotent. Then consider the two open subsets Xe and X1−e. Since
e(1 − e) = e − e2 = e − e = 0, we cannot have ex and (1 − e)x both be units in any stalk OX,x. Hence Xe and X1−e are
disjoint. On the other hand, this same equation shows that one of e, 1 − e must be contained in the unique maximal ideal of
OX,x. Finally, ex+(1− e)x = 1 is not contained in this maximal ideal, and so exactly one of them is contained in the maximal
ideal. Thus one of them is a unit, whence x is contained in at least one of Xe and X1−e. Thus we’ve written X as the disjoint
union of open subsets, so X is disconnected.

If (A,m) is local, then any closed subset of SpecA is of the form V (I), and I ⊆ m, som ∈ V (I). Thus there are no disjoint
closed subsets and so SpecA is connected.
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Notice that under these assumptions, U is clearly open and X \ U is the union of all other connected components and so
is also open. Thus, the uniqueness of e is obvious, since we’ve specified its restriction to an open cover, and existence follows
by gluing.

The next claim is false in characteristic 2. For example, in Spec(F2 × F2), e = (1, 0) is the claimed section, but it is
not indecomposable, as it is the sum of the idempotents (1, 1) and (0, 1). Outside of characteristic 2, however, we are okay.
Indeed, write e as above as the sum of two idempotents e = f + g. Then 1 = e|U = f |U + g|U , but U is connected, so the only
idempotents are 0, 1. Thus, WLOG, f |U = 0 and g|U = 1. For each other connected component V , we get 0 = e|V = f |V +g|V ,
and so f |V = g|V = 0 since again V is connected and OX(V ) has characteristic ̸= 2. So, gluing back gives f = 0 and g = e,
and so e is indecomposable.

So, finally, we show that this association is bijective. It’s clearly bijective, for if e corresponds to U and f corresponds to V
for components U ̸= V , then e|V = 0 while f |V = 1, so e ̸= f . So we wish to show it is surjective; let e ∈ OX(X) be any
nonzero indecomposable idempotent. Since it is nonzero, it cannot be zero when restricted to each connected component. So,
there is some component U with e|U ̸= 0. Since U is connected and e|U is idempotent, we must have e|U = 1. Now, suppose
e|V ̸= 0 for some other component V . Then e = (e− f) + f , where f is the idempotent corresponding to V and e− f, f are
nontrivial. This contradicts indecomposability, and so we must have e|V = 0 for each other component, whence e is precisely
the idempotent corresponding to U .

Exercise (2.4.7).

Proof. Let x ̸= y be two points of a scheme X . Let U = SpecA be an open affine neighborhood of x. If y /∈ U , then we’re
done as we’ve found an open set containing one point and not the other.

Otherwise y ∈ U , so x, y are distinct prime ideals in A. As sets, we therefore have either x ̸⊆ y or y ̸⊆ x. In the first case,
y /∈ V (x) so y ∈ U \ V (x) while x /∈ U \ V (x) giving an open set containing y but not x. In the second, x ∈ U \ V (y) while
y /∈ U \ V (y), completing the proof.

Exercise (2.4.8).

Proof. For points x, y ∈ X , define x ≤ y if y ∈ {x}, i.e. if x specializes to y. First, I claim this is a partial order on X . It is
clearly reflexive as x ∈ {x}. It is also transitive: if x ∈ {y} and y ∈ {z}, then {z} is a closed set containing y, whence it
contains the full closure {y}, and therefore x ∈ {z}.

Finally, suppose x ̸= y. Then, from the previous exercise,X is T0, so WLOG there is some open set U containing x but not
y. But then y ∈ X \ U , a closed set, and so {y} ⊆ X \ U . But x is not in the latter, so it cannot be in the former, i.e. y ̸≤ x. In
other words, ≤ is antisymmetric, and therefore a partial order.

Now, let C ⊆ X be a totally ordered subset. Let

U =
⋃
x∈C

X \ {x}

First, suppose that U = X . Then we’ve exhibited an open cover ofX , and so by quasi-compactness, we conclude that there are
x1, . . . , xn ∈ C with

X =

n⋃
i=1

X \ {xi} =⇒ ∅ =

n⋂
i=1

{xi}

Since C is totally ordered, any finite subset has a maximum. WLOG, we may assume x1 ≥ xi for each i, i.e. x1 ∈ {xi} for each
i, contradicting the fact that the intersection of these closures is empty.

So, we must have that U is proper. Let z ∈ X \U . Then, for all x ∈ C , we have z ∈ {x}, i.e. z ≥ x. So z is an upper bound
for C . Thus, we’ve shown that any totally ordered subset ofX has an upper bound, i.e. Zorn’s lemma applies. Thus, let y ∈ X
be a maximal element. Then if x ∈ {y}, we get x ≥ y and so x = y by maximality. So, we have {y} = {y}, which implies that
y is a closed point, which is what we wished to show.

Exercise (2.4.9).

Proof. Let x ∈ X be a point withOX,x is reduced. Pick an affine neighborhood SpecA of x, and note that sinceX is Noetherian,
so is A. Think now of x as a prime ideal of A. Then OX,x = Ax, the localization of A at the prime x. Since this is a reduced
ring, we conclude that 0Ax = N (Ax) = N (A)x, where N denotes the nilradical. Since A is Noetherian, we can write
N (A) = (f1, . . . , fn), and the fact that it localizes to zero means that there exist a1, . . . , an ∈ A \ x with aifi = 0. Define

U =

(
n⋂
i=1

D(ai)

)
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This is the finite intersection of open sets, and so is open in SpecA, and so also open in X . I claim OX,y is reduced for each
y ∈ U , which would complete the argument for reducedness. Indeed, let y ∈ U and note that OX,y = Ay . Such an ideal y then
satisfies ai /∈ y for each i, and so fi/1 = aifi/ai = 0 in Ay . Thus, N (Ay) = N (A)y = (f1, . . . , fn)y = 0Ay , showing that
Ay is reduced.

Now, suppose x ∈ X is such thatOX,x is integral. In other words,OX,x is reduced and x is contained in a unique irreducible
component Z . First, let U be an open neighborhood of x such that OX,y is reduced for each y ∈ U as above. Then, note that
since X is Noetherian, it has finitely many irreducible components Z = Z0, Z1, . . . , Zn, and we can define:

V = U \

(
n⋃
i=1

Zi

)

Then x ∈ V since x /∈ Zi for i ̸= 0, and V is open since it is U minus the finite union of closed sets. Each y ∈ V also then lies
only on Z , and so OX,y is integral as desired.

Exercise (2.4.10).

Proof. Suppose f(X) ⊆ V (I), and let g ∈ f#(SpecA)(I). Let U = SpecB be an open affine subset of X and note then that
the restriction of f# is a ring homomorphism A → B, so there is some h ∈ I with g|U = f#(h). Now, if P is a prime in B,
then (f#)−1(P ) = f(P ) ∈ V (I) and so contains h. So, g|U = f#(h) ∈ P . This is true for all P , and so g|U is contained in
the nilradical of B, and so there is some n with (g|U )n = 0.

Now, since f is quasi-compact, f−1(SpecA) = X is quasi-compact, and so we can cover X by finitely many affine
neighborhoods U1, . . . , Um. The argument above shows that there are n1, . . . , nm with (g|Uj )

nj = 0. But then for n =
max{n1, . . . , nm}, we have (gn)|Uj

= (g|Uj
)n = 0, and so gn = 0 on X by gluing. This shows one implication.

Conversely, suppose f#(SpecA)(I) is nilpotent. Let x ∈ X and pick an affine neighborhood U = SpecB of x. Then,
if g ∈ I , we have f#(g) is nilpotent and so contained in each prime of B, including x, and so g ∈ (f#)−1(x) = f(x). So
I ⊆ f(x) and f(x) ∈ V (I). Since x was arbitrary, f(X) ⊆ V (I) as desired.

Exercise (2.4.11).

Proof. (ii) =⇒ (iii). Let U ⊆ f−1(V ), and consider the maps:

OY (V ) → OX(f−1(V )) → OX(U)

The first map is injective by assumption, and so it suffices to show the second is injective. But the injection OX(f−1(V )) →
OX,ξX factors through this map, so we’re done.

(iii) =⇒ (iv). Let V = SpecA ⊆ Y be an open affine. Then f−1(V ) is open in X and so necessarily contains ξX .
Choosing an open affine in X containing ξX , we can restrict to a principal open set contained in f−1(V ), giving us U =
SpecB ⊆ f−1(V ). Under these identifications, the injection OY (V ) → OX(U) is a map A → B and the generic points are
the zero ideals of A,B. Since the map injects, the preimage of 0B is 0A, so f(ξX) = ξY .

(iv) =⇒ (v). Trivial.
(v) =⇒ (i). This is essentially trivial: f(X) ⊇ ξY = Y .
(i) =⇒ (iv). Suppose f is dominant. Then

Y = f(X) = f({ξX}) = f({ξX}) = {f(ξX)}

so f(ξX) is a generic point of Y , but ξY is the unique one.
(iv) =⇒ (ii). Suppose f# is not injective, whence it is not injective on stalks, so there is some x ∈ X such that the map

OY,f(x) → OX,x is not injective. We have the commutative diagram

OY,f(x) OX,x

OY,ξY OX,ξX

and since the vertical arrows are injections, the bottom arrow must also fail to be injective. But this is a map of fields, so this
is impossible.

Exercise (2.4.12).
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Proof. Let Y be a reduced closed subscheme of ProjB. As a set, Y is closed, so it is of the form V+(I) for some homogeneous
ideal I of B. Without loss of generality, we may assume I is radical, since

√
I is also homogeneous and V+(

√
I) = V+(I).

Now, note that the mapB → B/I induces a closed immersionProj(B/I) → Proj(B) since the map respects the irrelevant
ideals. But then Proj(B/I) is a reduced closed subscheme of Proj(B) that has the same underlying set as Y . By uniqueness,
Y = Proj(B/I).

Exercise (2.5.1).

Proof. It is clear that dimX ≥ supi dimXi, since eachXi is contained inX . Now, let x ∈ X , and choose an open neighborhood
U of x that intersects only finitely many Xi. Then, since the Xi cover, we have:

U =

n⋃
j=1

U ∩Xij

for some indices i1, . . . , in. Now, consider a chain of irreducible closed subsets of U :

Z0 ⊊ Z1 ⊊ · · · ⊊ Zm

The decomposition above shows:

Zm =

n⋃
j=1

Zm ∩Xij

and irreducibility gives, after possibly rearranging,Zm = Zm∩Xi1 , i.e. Zm ⊆ Xi1 . But then the closure of eachZi gives a chain
of irreducible closed subsets ofXi1 , and so dim(Xi1) ≥ m. To avoid rearranging, we can note therefore that supi dim(Xi) ≥ m.
Since this applies for eachm, we can take suprema again to get dim(U) ≤ supi dim(Xi).

Since this is true for a particular U , we therefore also get dimx(X) = infU∋x(dim(U)) ≤ supi dim(Xi), and finally, taking
suprema over all x ∈ X gives dim(X) ≤ supi dim(Xi), as desired.

Exercise (2.5.2).

Proof. Note that {x} is irreducible and closed inX . So, the codimension is the supremum of lengths of strictly ascending chains
of irreducible closed subsets between {x} and X . Choose an open affine U = SpecA containing x. Then we have a bijection
between such chains and chains of irreducible closed subsets of U containing x, given by taking intersections with U for one
direction and taking closures in X for the other.

So, considering x as a prime ideal in A, we are considering chains of irreducibles in U containing x, which is precisely
chains of primes in A contained in x, which is precisely chains of primes in Ax = OX,x. So, the codimension is exactly
dim(OX,x).

Exercise (2.5.3).

Proof. If Z contains an irreducible componentW , then

codim(Z,X) = inf
T irred comp of Z

codim(T,X) ≤ codim(W,X) = 0

since W is a maximal irreducible closed subset by assumption. Conversely, if codim(Z,X) = 0, then codim(T,X) = 0 for
some irreducible component T of Z . Then T is irreducible and closed in X , so it is contained in an irreducible componentW
of X . But if T ̸= W , then the chain T ⊆ W shows codim(T,X) ≥ 1, contrary to assumption. So T = W is an irreducible
component of X itself.

If we let X be the union of a plane and a line and let Z be the line, then Z is an irreducible component of X , and so has
codimension zero, but dim(Z) = 1 and dim(X) = 2. Explicitly, let A = k[x, y, z]/(xz, yz) for any field k, let X = SpecA,
and let Z = V (x, y). Clearly Z is closed, and it is irreducible since (x, y) is a prime ideal of A. The codimension is zero as
claimed since (x, y) is a minimal prime of A. Further, Z is one-dimensional since A/(x, y) ∼= k[z] is one-dimensional. But X
is two dimensional, since we have the sequence of primes

(z) ⊊ (y, z) ⊊ (x, y, z)

in A.

Let A = OK and note that A[T ]/(tT − 1) ∼= At ∼= Frac(A), and so (f) is maximal. Since A[T ] is a domain, X is integral
and so clearly irreducible. We have dimOX,x = ht(f) = 1, where the former is essentially the definition, and the latter follows
from Krull’s principal ideal theorem, and the fact that (0) is prime. Also dim{x} = 0 since (f) is maximal. Finally, dim(X) ≥ 2
since we have the chain of primes (0) ⊊ (T ) ⊊ (T, t) in A[T ]. But this shows the claim: codim({x}, X) + dim{x} = 0+ 1 <
2 ≤ dim(X).
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Exercise (2.5.4).

Proof. The claim is obvious for r = 1, since it says that if I ̸⊆ p, then I ̸⊆ p.
Now, suppose the claim is known for r − 1 and I ̸⊆ pi for i = 1, . . . , r. If pr ⊇ pi for some i < r, then

⋃
j ̸=i pj =

⋃
j pj .

But then the induction hypothesis gives I ̸⊆
⋃
j ̸=i pj completing the proof.

Otherwise, pr doesn’t contain any other pi. So, we can choose elements y1, . . . , yr−1 with yi ∈ pi \ pr . Also choose
z ∈ I \ pr . Then, let

y = z · y1 · · · yr−1

Since pr is prime and none of the multiplicands are in pr , we get y /∈ pr . But also y ∈ Ip1 · · · frpr−1 by construction as
suggested. By the induction hypothesis, I ̸⊆

⋃
i<r pi, so we can choose x ∈ I \

(⋃
i<r pi

)
also as suggested.

Finally, we have that x, x+ y ∈ I , so we would be done if at least one of these is not in
⋃
i pi. Suppose x ∈

⋃
i pi. Then by

construction, x ̸ p1, . . . , pr−1, so we get x ∈ pr . But then x+ y ∈ pr =⇒ y = (x+ y)− x ∈ pr , which we know is not true.
So x+ y /∈ pr . Further, for i < r, we have x+ y ̸ pi for a similar reason: if it were, then x = (x+ y)− y ∈ pi as well, which it
isn’t. So, x+ y isn’t in any pi as desired.

Exercise (2.5.5).

Proof. The argument is nearly identical to the previous; we only need to keep track of degrees. We can again assume pr con-
tains no pi for i < r. So we can choose elements yi ∈ pi \ pr . For each i, if pr contained all homogeneous components of yi,
then it would contain their sum yi, which it doesn’t. So, some homogeneous component of yi is not contained in pr , but pi is
homogeneous, so it does contain this component. Thus, without loss of generality, we can assume each yi is homogeneous by
replacing it with this homogeneous component if necessary. Similarly, we can choose z ∈ I \ pr homogeneous. But then the
product a = z · y1 · · · yr−1 is homogeneous and not in pr by primality.

By the induction hypothesis, we can choose such a b. If b /∈
⋃
i pi then we’re done, so assume otherwise. Since b /∈ pi for

i < r, we must have b ∈ pr . Then a /∈ pr , so adeg b /∈ pr by primality, and so adeg b + bdeg a /∈ pr . For i < r, we have a ∈ pi so
adeg b ∈ pi, but b /∈ pi, so bdeg a /∈ pi by primality. Then we again get adeg b + bdeg a /∈ pi. So we have found a homogeneous
element (of degree (deg a)(deg b)) of I not contained in any pi as desired.

Exercise (2.5.6).

Proof. Let p be a prime ideal of A containing I , and so in particular containing x. Suppose we have a chain of primes p0 ⊊
· · · ⊊ pn = p. By a lemma in the section, there is another chain of primes q1 ⊊ · · · qn = p with x ∈ q1. This gives a chain of
prime ideals inA/xA ending with p/xA, and so we conclude n−1 ≤ ht(p/xA), i.e. n ≤ ht(p/xA)+1. Taking the supremum
over all n, i.e. over all chains of primes, we conclude that ht(p) ≤ ht(p/xA) + 1. Taking the minimum over all p containing I
gives us the conclusion we want: ht(I) ≤ ht(I/xA)+1. In particular, we’re using here the fact that as p varies over all primes
of A containing I , p/xA enumerates all primes of A/xA containing I/xA, since the ideals of A/xA correspond to ideals of A
containing x, primes are preserved under this correspondence, and any prime containing I automatically contains x.

On the other hand, the inequality ht(I/xA) ≤ ht(I) is obvious, since any chain of primes inA/xA lifts to one inA. Thus, if
the previous inequality is strict, we must have ht(I/xA) = ht(I). Choose a prime p containing I with ht(I/xA) = ht(p/xA)
and a chain of primes in A/xA ending with p/xA. This lifts to a chain of primes in A containing x, and the first prime in this
chain must be minimal in A, else we would get ht(I) > ht(I/xA). So, this first prime is a minimal prime of A containing x.

Suppose now that I is contained in the union of minimal primes of A. Since A is noetherian, there are only finitely many
of these, and by prime avoidance, it must then be contained in one of them. But then ht(I) = 0. Conversely, suppose I is not
contained in the union of minimal primes. Then choose x ∈ I that is in no minimal prime and note that by the above argument,
ht(I) = ht(I/xA) + 1 ≥ 1.

Finally, we show the last claim by induction on r. If r = 0, then the statement is trivial by taking J = 0. Suppose now
r ≥ 1. By the above, ht(I) = r ≥ 1 means that we can choose x ∈ I not contained in any minimal prime of A. Then
ht(I/xA) = ht(I)−1 = r−1, so by induction, we can choose an ideal J ′ generated by r−1 elements with ht(J ′) = r−1 and
ht((I/xA)/J ′) = 0. Lifting these generators gives an ideal J ofAwith J/xA = J ′. Then J+xA is generated by r elements and
since x is still not contained in anyminimal prime ofA, we conclude that ht(J+xA) = ht((J+xA)/xA)+1 = ht(J ′)+1 = r.
Finally, note that since (I/xA)/J ′ has height zero, there is a minimal prime of (A/xA)/J ′ ∼= A/(J + xA) containing I . But
this isomorphism shows that there is a minimal prime ofA/(J+xA) containing I , and so ht(I/(J+xA)) = 0. This completes
the proof using the ideal J + xA.

Exercise (2.5.7).
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Proof. Note first that dimension is a topological property, so we may assume that all schemes are reduced. Indeed, replacing a
scheme with its reduced scheme structure does not change the topology at all, and hence preserves the dimension.

Note also that it suffices to show the claim when Y is an affine variety. Indeed, we can cover Y by affine varieties, and the
preimage of this gives an open cover ofX by algebraic varieties. Showing the claim on each of these restricted maps then gives
the result overall since the dimension of Y can be computed locally on this cover and the dimension of X can be computed
locally on the preimage cover. So, write Y = SpecA for A a finitely generated k-algebra.

Let S denote the set of generic points of irreducible components ofX . SinceX is noetherian, this is a finite set, and purely
topologically, we have: ⋃

x∈S
V (f(x)) =

⋃
x∈S

f(x) = f(S) = f(S) = f(X) = Y

So, in particular, any minimal prime ofA is the image of some generic point ofX . Choose such a minimal prime, corresponding
to a generic point ξY ∈ Y and a preimage ξX ∈ X also generic. On these irreducible components, f is dominant, so we have an
injective map of sheafs, which induces an injection OY,ξY → OX,ξX . But (after passing to the reduced subscheme structure if
necessary) this means that the transcendence degree of the latter is at least as much as the transcendence degree of the former
over k. So, the dimension of this irreducible component of Y is at most the dimension of this irreducible component of X ,
which is itself at most the dimension of X . Taking the supremum over all ξY ∈ Y gives the result.

Exercise (2.5.8).

Proof. Note that SpecOK = {(0), (t)} and that SpecA = {(0)×k,K×(0)}. Then, in fact, fφ is a bijection sinceϕ−1((0)×k) =
(0) and ϕ−1(K × (0)) = (t). However, the two primes in OK form a chain, while the two primes of A are incomparable, so
dimOK = 1 and dimA = 0. Finally, A is a finitely generated OK-algebra since both K = OK [x]/(tx − 1) and k = OK/(t)
are.

Exercise (2.5.9).

Proof. Let x ∈ X(k). To show {x} is closed, it suffices to show it is closed in any affine chart SpecA containing x. Suppose
instead that it is not, so that for some A, x is a non-maximal prime. Then k = k(x) = Frac(A/x), but A/x is a domain that is
not a field, so it is at least 1-dimensional, making Frac(A/x) have transcendence degree at least 1 over k. This is a contradiction,
so we must have that {x} is closed. More generally, we’ve shown that if k(x) is algebraic over k, then x is closed in X .

For X an algebraic variety, we have the converse. Indeed, if x ∈ X is closed, then picking an affine chart, we get that x is
a maximal ideal of a finitely generated k-algebra A. But then k(x) = A/x is a field extension of k that is finitely generated as
a k-algebra, and so is a finite extension by Zariski’s lemma. In particular, k(x) is algebraic over k.

Exercise (2.5.10).

Proof. ForX = A1
k , the result is immediate: each Yn is closed, so it is of the form V (I) for I an ideal of k[T ]. But this is a PID,

so I = (f). If f = 0, then V (I) = X , which doesn’t have strictly smaller dimension than X , so we must have f ̸= 0. But
then f only has finitely many prime factors, so V (I) is finite, i.e. each Yn is finite. So,

⋃
n Yn is a countable set, while X is

uncountable, since each (T − a) is a maximal ideal of k[T ] for each a ∈ k and there are uncountably many of these.
This now implies the case for X = Amk by induction on m. Indeed, first again write Yn as V (I) for some ideal I . Since

k[T1, . . . , Tm] is Noetherian, I = (f1, . . . , fr) is finitely generated. Considering each fi as a polynomial in Tm with coefficients
in k[T1, . . . , Tm−1], they each have finitely many roots. In other words, overall, I is contained in only finitely many ideals of
the form (Tm − a) for a ∈ k. So, the set S = {(Yn, a) | (Tm − a) ∈ Yn} is countable, as a countable union of finite sets. On
the other hand, for a ∈ k, consider the map φa : k[T1, . . . , Tm] → k[T1, . . . , Tm−1] that maps Tm to a and is the identity on
the rest. This induces a map fa : Am−1

k → Amk and if
⋃
n Yn = Amk , then

⋃
n f

−1
a (Yn) = Am−1

k . By induction, this implies
f−1
a (Yn) = Am−1

k for some n. But then (Tm − a) = ker(φa) = φ−1(0) = fa(0) ∈ Yn. This shows that the set S above is
uncountable, since for each a ∈ k it contains (Yn, a) for some n.

Now, if X = SpecB is an affine variety, so B is a finitely generated k-algebra, then we can write B as a finite A =
k[T1, . . . , Tm]-module for a subring A ⊆ B. But then the induced map f : X → SpecA is closed. Indeed, if V (I) is a closed
subset ofX , then f(V (I)) = V (A∩I). One containment is obvious: ifQ ⊆ B is a prime containing I , thenQ∩A is a prime of
A containing A∩ I . For the other containment, note that if P ∈ SpecA contains A∩ I , then the composition A→ B → B/I
is integral, so satisfies lying-over, giving a prime Q of B containing I with Q ∩A = P .

But now, if X =
⋃
n Yn, then SpecA =

⋃
n f(Yn) (again using lying-over for surjectivity of f ), and so by the previous

work f(Yn) = SpecA for some n. But dim(f(Yn)) ≤ dim(Yn) < dim(X) = dim(SpecA) (first inequality from a prior
exercise) so this cannot be.

Finally, if X is now an arbitrary algebraic variety and X =
⋃
n Yn, then U =

⋃
n(U ∩ Yn) for any affine U ⊆ X . But

dim(U ∩ Yn) ≤ dim(Yn) < dim(X) = dim(U), so this cannot be either.
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Exercise (2.5.11).

Proof. This is just the sheaf condition.

Let U = SpecA be an affine chart in X . Since dim(X) = 0, dim(U) = 0, so every prime of A is maximal, i.e. every point
of U is closed. Since there are only finitely many of them, this means every subset is closed, so every point in U is open in U ,
whence it is open in X as well. So X has the discrete topology.

But for rings A and B, note that the coproduct of SpecA and SpecB in the category of schemes is Spec(A × B). In
particular, the finite disjoint union of affine schemes is again affine. But each singleton {x} is affine; indeed, the affine sets form
a base for the topology on X and {x} is open, so it contains an open affine U that contains x, which must be U = {x} itself.
So, now, X is affine as the disjoint union of the finitely many singletons.

Note that we’ve already shown that X has the discrete topology. Hence if X = SpecA, from the previous two points, we
get

A = OX(X) =
∏
x∈X

OX({x}) =
∏
x∈X

OX,x =
⊕

p∈SpecA

Ap

as claimed.

For a counterexample when A has positive dimension, consider A to be a DVR with uniformizer t and field of fractionsK .
Then dimA = 1 and SpecA = {(0), (t)}. The singleton {(t)} is not open since {(0)} is not closed, as (0) is not maximal. So
not every singleton is open, unlike above. Further, we have

⊕
p∈SpecAAp = K ⊕ A. But this is not isomorphic to A since

Spec(K ⊕A) = {(0)⊕A,K ⊕ (0),K ⊕ (t)} has 3 points, rather than 2.

Exercise (2.5.12).

Proof. More generally, if A is a ring and f ∈ A, then D(f) ⊆ Spec(A) is isomorphic to Spec(Af ), and so a principal open
subset of an affine scheme is affine. Similarly, if B is graded and f ∈ B+ is homogeneous, then D+(f) ∼= Spec(B(f)) and so
is also affine.

By the sheaf condition, OAn
k
(X) is the kernel of the map:∏

i

OAn
k
(D(fi)) →

∏
i,j

OAn
k
(D(fi) ∩D(fj))

On the one hand, OAn
k
(D(fi)) = k[T1, . . . , Tn]fi . Then,

D(fi) ∩D(fj) = Ank \ V ((fi) ∩ (fj)) = D(lcm(fi, fj))

So OAn
k
(D(fi) ∩D(fj)) = k[T1, . . . , Tn]fij where fij = lcm(fi, fj). Composing with an injection doesn’t change the kernel,

so to simplify, we can embed everything in K = k(x1, . . . , xn), the field of fractions. Then, an element in the first ring looks
like a tuple (gif−tii )i, and if it is in the kernel, then gif−tii = gjf

−tj
j inK for every i, j. Fix some index i and by factorization

in k[x1, . . . , xn], write gif−tii = a/b for a, b coprime; I claim that b | fr for some r ∈ Z. Indeed, it suffices to show that each
prime factor of b also divides f . Let p | b be a prime factor, and write νp for the p-adic valuation. For contradiction, suppose
νp(f) = 0. Then

tiνp(fi) = νp(af
ti
i )− νp(a) = νp(bgi) = νp(b) + νp(gi)

where we’ve used the fact that p ∤ a since a, b are coprime. On the other hand, p doesn’t divide the gcd of a set of polynomials,
so it fails to divide one of them, say p ∤ fj . By the kernel condition,

tiνp(fi) = νp(f
ti
i gj) = νp(f

tj
j gi) = νp(gi)

Equating these gives νp(b) = 0, contrary to assumption. So, indeed, p | f and so b | fr for some r.
But now, what we’ve shown is that any element of the kernel is a tuple where each element can be written in the form

aif
−ri . But the kernel condition also implied that each of these elements are equal (inK), and so really they are the image of

a single element af−r ∈ k[x1, . . . , xn]f . Conversely, it is clear that the image of any such element gives a tuple in the kernel.
So, OAn

k
(X) = k[x1, . . . , xn]f as claimed.

Note that

X =
⋃
i

D(fi) = Ank \
⋂
i

V (fi) = Ank \ V

(∑
i

(fi)

)
⊆ Ank \ V (f) = D(f)

21



since f | fi for each i. If X is affine, then this containment exhibits X as a localization of D(f) which is isomorphic to it,
whence we get X = D(f) is principal. [There’s something wrong here; come back to it]

Let Z be an irreducible closed subset of Pnk of dimension n− 1. In each coordinate chart, this is an irreducible closed subset
of Ank of dimension n − 1, so it equals V (P ) for a height 1 prime P , which is principal since k[x1, . . . , xn] is a UFD. So, Z is
principal in each chart and glues to be principal overall. [Fill in the details: why does Z not drop in dimension in charts, why
can we glue, etc.]

[Not sure].

Exercise (2.5.13).

Proof. First, suppose that X is an integral algebraic variety over k of dimension n. We’ve already seen that this implies that
the transcendence degree of K(X) is then dim(X) = n as desired. It is also finitely generated as a field extension over
k. Indeed, choose an affine subvariety U = SpecA, where A is a domain and a finitely generated k-algebra, and note that
K(X) = OX,ξ ∼= Frac(OX(U)) = Frac(A), which is generated (as a field over k) by the same generators of A over k.

Conversely, supposeK has transcendence degreen over k and is finitely generated. Choose a transcendence basis {f1, . . . , fn} ⊆
K , so that K is algebraic over L = k(f1, . . . , fn); let A = k[f1, . . . , fn]. In fact, K is also finitely generated over L since it
is finitely generated over k, so we can choose generators g1, . . . , gr giving K = L(g1, . . . , gr). Let Li = L(g1, . . . , gi) and
Ai = A[g1, . . . , gi], so we get a tower of extensions L ⊆ L1 ⊆ · · · ⊆ Lr = K . At each step, we adjoin a single element gi with
minimal polynomialmi ∈ Li−1[T ]. In fact, by clearing denominators, we can find a ∈ A such that the minimal polynomial of
agi ∈ Ai−1[T ] instead. Replacing gi with agi doesn’t change any of the fields involved, so without loss of generality, we may
assumemi ∈ Ai−1[T ] for each i.

Now, let X = SpecAr . We’ve constructed the tower of rings to be integral extensions at each step, so dim(X) =
dim(Ar) = dim(A) = n. It is also clear that Ar is a finitely generated k-algebra and a domain, so X is an integral alge-
braic variety over k. Finally,K(X) = Frac(Ar) = Lr = K as desired. So, we’re done.

[I’m not totally clear on how to make X projective. Maybe it already is? I should try to embed it in Pn+rk or something.
Something something ample divisor.]

Exercise (2.5.14).

Proof. For x ∈ L, let mx : L → L be the multiplication by x map. Picking a basis for L over K allows us to write
mx as a matrix with coefficients in K , whence N(x) = det(mx) ∈ K . Multiplicativity is also clear, since for x, y ∈ L:
N(xy) = det(mxy) = det(mx ◦my) = det(mx) det(my) = N(x)N(y).

Let b ∈ B, and let
f(T ) = Tn + an−1T

n−1 + · · ·+ a0

be the minimal polynomial of b overK . Consider the towerK ⊆ K(b) ⊆ L. Fixing a basis c1, . . . , cr of L overK(b) gives the
basis {cibj | 1 ≤ i ≤ r, 0 ≤ j ≤ n − 1} of L over K . With respect to this basis, multiplication by b has a simple form: it is
block diagonal, where each block is the matrix:

A =


0 0 0 · · · 0 −a0
1 0 0 · · · 0 −a1
0 1 0 · · · 0 −a2
...

...
...

. . .
...

...
0 0 0 · · · 1 −an−1



Exercise (2.5.15).

Proof.
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