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Chapter 1
Exercise (1.2.A).

Proof. The two notions can be identified. Indeed, given a group G in the usual sense, define a category
with a single object X , and for each g ∈ G, define a morphism fg : X → X . Further, for two morphisms
fg, fh, define composition by fg ◦ fh = fgh. This gives a 1-object groupoid, since each morphism is an
isomorphism: the morphism fg has inverse fg−1 .

Conversely, given a 1-object groupoid, the set of morphisms on that one object forms a group.

On the other hand, there are clearly groupoids that aren’t groups, e.g. a category with two objects and
only the identity morphisms on those objects.

Exercise (1.2.B).

Proof. The identity morphism is invertible, with itself as left- and right-inverse. The composition of two
invertible morphisms is again invertible, since (f ◦g)◦(g−1◦f−1) = id. Finally, the inverse of an invertible
morphism is invertible. So, the set of invertible morphisms forms a group under composition.

Given a set X , the automorphisms of X in the category of sets is the set of bijections f : X → X , i.e.
the automorphism group is SX , the symmetric group onX . The automorphisms of a vector space in V eck
are the automorphisms in the usual sense in linear algebra.

Finally, ifA andB are isomorphic objects, with an isomorphism f : A→ B, then for an automorphism
ϕ : A → A, the morphism f ◦ ϕ ◦ f−1 is an automorphism of B, with inverse f ◦ ϕ−1 ◦ f−1. So, this
association gives an isomorphism of automorphism groups.

Exercise (1.2.C). Skipped upon recommendation
Exercise (1.2.D). Skipped upon recommendation

Exercise (1.3.A).

Proof. Let A,B both be initial objects in some category. Then, since A is initial, there is a morphism
f : A→ B, and sinceB is initial, there is a morphism g : B → A. Then idA and g ◦ f are both morphisms
A→ A, but since A is initial, there is a unique such morphism, so g ◦ f = idA. Similarly, f ◦ g = idB . So,
f and g are isomorphisms. Further, this isomorphism is unique since any isomorphism A→ B is firstly a
morphism, and there is a unique such morphism since A is initial.

The case of final objects is identical. In fact, this proof already shows it by noting that an object is final
in a category if and only if it is initial in the opposite category.

Exercise (1.3.B).



Solution. The initial object in Sets is the empty set, since there is a unique map from the empty set to
any other set. The final object in Sets is any set with a single element, since there is a unique map from
any set to this set. Note that specifying which single-element set is irrelevant, since any two such sets are
uniquely isomorphic as sets.

The initial object inRings is Z (recall we are only considering commutative rings with unity and mor-
phisms that preserve unities), since there is a unique morphism given by mapping 1 to 1 ∈ R for a given
ring R. The final object is the zero ring.

Top is the “same” as set: the initial object is the empty space and the final object is a single-point space,
since there is a unique continuous map in each case.

Given a set S, the poset category of subsets of S has ∅ as an initial object since it is a subset of each
other subset of S, and it has S as a final object. If S is a topological space and we consider the poset
category of open subsets of S, the initial and final objects are the same.

Exercise (1.3.C).

Proof. In one direction, suppose s ∈ S is a zerodivisor, so that there is some nonzero x ∈ A with sx = 0.
Then, since s(1 · x− 1 · 0), we get that x/1 = 0/1 in S−1A. So, x is in the kernel of the map A → S−1A
and it isn’t injective.

Conversely, suppose this map isn’t injective. Then, there is some nonzero element x in the kernel, so
that x/1 = 0/1. I.e. there is some s ∈ S with s(1 ·x−1 ·0) = 0, i.e. sx = 0, whence s is a zerodivisor.

Exercise (1.3.D).

Proof. First, note thatA→ S−1A has the property that all elements ofS aremapped to invertible elements,
since for s ∈ S, the image is s/1, which has inverse 1/s ∈ S−1A. Now we want to see that it is initial
with respect to this property. So, let f : A → B be a morphism with each element of S mapping to an
invertible element of B. Then, we’d like to define a factorization through S−1A. Define:

g(a/s) = f(a)f(s)−1

First, note that this definition makes sense, since for each s ∈ S, f(s) is invertible and so f(s)−1 exists.
Second, we want to see that it is well-defined. So, suppose a/s = b/t, so that there ihs some r ∈ S with
r(ta− sb) = 0. Then,

0 = f(r(ta− sb)) = f(r)(f(t)f(a)− f(s)f(b))

Since f(r) is invertible, we can cancel it, and then multiplying by the inverses of f(t) and f(s) gives:

f(a)f(s)−1 = f(b)f(t)−1

so that g is well-defined. Finally, we want to see it is a ring homomorphism. First, we have g(1/1) =
f(1)f(1)−1 = 1. Second, if a/s, b/t ∈ S−1A, then

g(a/s+ b/t) = g((at+ bs)/(st)) = f(at+ bs)f(st)−1 = f(a)f(s)−1 + f(b)f(t)−1 = g(a/s) + g(b/t)

and
g((a/s)(b/t)) = g((ab)/(st)) = f(ab)f(st)−1 = f(a)f(b)f(s)−1f(t)−1 = g(a/s)g(b/t)
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as desired. Thus g is a ring homomorphism. Penultimately, we show it factors f . Let ι : A→ S−1A be the
canonical map. Then, for a ∈ A,

g(ι(a)) = g(a/1) = f(a)f(1)−1 = f(a)

so that f = g ◦ ι as desired. To finally finish, we need to see that g is unique. So, suppose we have another
ring homomorphism h : S−1A→ B with f = h ◦ ι. Then, let a/s ∈ S−1A. We have

h(a/s) = h((a/1)(1/s)) = h(a/1)h(1/s) = h(a/1)h(s/1)−1 = h(ι(a))h(ι(s))−1 = f(a)f(s)−1 = g(a/s)

so that h = g. This completes the proof that S−1A is initial among such rings.

We address the “furthermore.” Let M be an S−1A-module. Then, it is also an A-module via a ·m =
(a/1) ·m for a ∈ A and m ∈ M (restriction of scalars). For s ∈ S, multiplication by s is an isomorphism
ofM since it has inverse given by multiplication by 1/s.

Conversely, supposeM is an A module such that multiplication by s is an automorphism ofM for all
s ∈ S. For x ∈ A, let φ(x) : M → M denote multiplication by x, and let R′ = φ(A) be the image of A
in the endomorphism ring of M . Then R′ is a commutative ring with unity, and an application of Zorn’s
Lemma gives a maximal subring R of the endomorphism ring of M containing R′. Then, φ : A→ R and
each element of S maps to an invertible element of R, so this factors as a map from S−1A, i.e. we get a
map from S−1A into the endomorphism ring ofM , i.e. M is an S−1A-module.

Note: This last part of the proof could be simplified if we prove that the universal property doesn’t
require the target ring to be commutative, because then we can directly note that an A-module M with
image of each s ∈ S being an isomorphism is precisely a map from A into the endomorphism ring of M
with each element of S mapping to a unit.
Exercise (1.3.E).

Proof. As suggested, define S−1M by symbolsm/s withm ∈M and s ∈ S such thatm/s = n/t iff there
is some u ∈ S with u(tm−sn) = 0. This is an equivalence relation on pairs (m, s) since 1(sm−sm) = 0,
u(tm− sn) = 0 implies u(sn− tm) = 0, and if u(tm− sn) = 0 and v(rn− tℓ) = 0 implies

ut(rm− sℓ) = r(utm)− utsℓ = r(usn)− utsℓ = us(rn− tℓ) = 0

so thatm/s = ℓ/r (note that ut ∈ S since u, t ∈ S and S is multiplicative).
We have the operation m/s + n/t = (tm + sn)/(st). This is well-defined, for if m/s = m′/s′ and

n/t = n′/t′, so that u(t′n− tn′) = 0 = v(s′m− sm′), then

uv(s′t′(tm+ sn)− st(t′m′ + s′n′)) = utt′(v(s′m− sm′)) + vss′(u(t′n− tn′)) = 0

so the sums are equal. Under this operation, S−1M is a group, since 0/1+m/s = (s0+1m)/(1s) = m/s,
andm/s+ (−m)/s = (sm+ s(−m))/(s2) = 0/(s2) = 0/1, and:(m
s
+

n

t

)
+
ℓ

r
=

tm+ sn

st
+
ℓ

r
=

r(tm+ sn) + stℓ

st(r)
=

trm+ s(rn+ tℓ)

s(tr)
=

m

s
+
rn+ tℓ

tr
=

m

s
+

(
n

t
+

ℓ

r

)
Now, S−1M is an A-module, under a · (m/s) = (am)/s, where the fact that this satisfies the module
conditions follows from the fact thatM is an A-module [proof omitted, this is already so long].

Finally, we have the map ϕ : M → S−1M via m 7→ m/1. This has the property that for s ∈ S,
multiplication by s is invertible, with inverse m/t 7→ m/(ts). Further, if N is an A-module with each
element of S inducing an automorphism of N and α : M → N is an A-module homomorphism, then we
get a map α′ : S−1M → N via m/s 7→ s−1 · α(m), where s−1 denotes the inverse of the isomorphism of
N induced by s.
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Exercise (1.3.F).

Proof. Parts (a) and (b) are both subsumed under showing that localization commutes with arbitrary direct
sums. For this, it’s useful to give direct sums a universal property. We claim (and show after this proof)
that the direct sum of A-modules {Mj} is an A-module P along with maps P → Mj that is initial with
respect to have maps into eachMj .

Now, given this property, define P =
⊕

j Mj and Q =
⊕

j S
−1Mj . We wish to show that Q = S−1P .

To do this, we show that Q has the universal property of being the localization of P . First, we need a
map P → Q. To find it, note that for each j we have maps ℓj : Mj → S−1Mj via localization and
gj : S

−1Mj → Q via the direct sum. Hence, since P is the direct sum, we have a unique map f : P → Q
such that f ◦ fj = gj ◦ ℓj for each j, i.e. we have commutative diagrams:

Mj S−1Mj

P Q

ℓj

fj gj

f

Finally, we show that f : P → Q is the localization map. To prove this, letN be an S−1A-module, and
let α : P → N be a morphism. Then, for each j, we have the composition map α◦fj , and by the universal
property of the localization, we thus get that each of these factors through a map αj : S

−1Mj → N . I.e.
the diagram extends

Mj S−1Mj

P Q

N

ℓj

fj gj

αjf

α β

By the universal property ofQ, the dashed arrow exists and makes the diagram commute. We finally wish
to show that α = β ◦ f . Fix a j, and note that

(β ◦ f) ◦ fj = β ◦ (gj ◦ ℓj) = αj ◦ ℓj = α ◦ fj

So, the two maps agree when composed by fj for each j, and by the uniqueness part of the property of
direct sums, we get that β ◦ f = α.

Finally, we wish to show β is unique. Suppose γ : Q → N satisfies γ ◦ f = α. Then, for each j we
have

γ ◦ gj ◦ ℓj = γ ◦ f ◦ fj = β ◦ f ◦ fj = β ◦ gj ◦ ℓj
By the universal property of ℓj , for each j, we get γ ◦gj = β ◦gj . Then, by the universal property ofQ, we
have that γ = β. This proves uniqueness. In other words, (Q, f) has the property that for any S-invertible
map P → N factors uniquely through f , so that Q = S−1P .

For the counterexample, we consider the suggestion, and let A = Z and for each n ∈ N letMn = Z as
well. Let S = Z \ {0}, so that S−1Mn = Q for each n. Thus,

(1, 1/2, 1/3, 1/4, . . .) ∈
∞∏
n=1

Q = Q
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On the other hand, our explicit description of S−1P shows that for each element of S−1P , there is an
element of S that multiplies it into (the image of) P . But for this element, there is no multiple of it that
consists entirely of integers, since the denominators get arbitrarily large. So, this element of Q isn’t in
S−1P and so they aren’t equal.

Exercise (1.3.G).

Proof. We’d like to define a map Z/2Z → Z/10Z ⊗ Z/12Z, for which we only need to map the single
element: let it map to 1⊗ 1. This is a homomorphism, since

2(1⊗ 1) = 2(1⊗ 25) = 10(1⊗ 5) = 10⊗ 5 = 0⊗ 5 = 0

It is injective since 1⊗ 1 is nonzero. Finally, it is surjective. Indeed, consider an arbitrary element:∑
j

aj ⊗ bj =
∑
j

ajbj(1⊗ 1)

which is the image of
∑

j ajbj .

Exercise (1.3.H).

Proof. To see that it is a functor, note that it gives a way to map objects to objects, but we also need
to map morphisms to morphisms. So, let f : M → L be a morphism of A-modules. Then, we can
define f ⊗ N : M ⊗ N → L ⊗ N via m ⊗ n 7→ f(m) ⊗ n and extending linearly. Now, we have
(idM ⊗N)(m ⊗ n) = idM(m) ⊗ n = m ⊗ n for all m,n, so that the identity is mapped to the identity.
Second, if f : M → L and g : L→ K , then for allm ∈M , n ∈ N :

((g ◦ f)⊗N)(m⊗ n) = (g ◦ f)(m)⊗ n

= g(f(m))⊗ n

= (g ⊗N)(f(m)⊗ n)

= (g ⊗N)((f ⊗N)(m⊗ n))

= ((g ⊗N) ◦ (f ⊗N))(m⊗ n)

so that ⊗N distributes over compositions. This shows that ⊗N is a functor.

Now, let M f−→ L
g−→ K → 0 is exact. We wish to show that g ⊗ N surjects and that ker(g ⊗ N) =

im(f ⊗N). For the first, it suffices for the image to contain each simple tensor, but this is immediate: for
k ∈ K there is ℓ ∈ L with g(ℓ) = k, so that (g ⊗N)(ℓ⊗ n) = k ⊗ n for any n ∈ N .

For the second, first note that ((g⊗N) ◦ (f ⊗N)) = (g ◦ f)⊗N = 0⊗N = 0 is the zero map. So, we
have that the image is contained in the kernel; we need the reverse. For this, we lift to the free modules
lying over the tensor products and pick generators there. We lift to a map ĝ : A[L×N ]→ A[K ×N ] via
(ℓ, n) 7→ (g(ℓ), n), and note that (g⊗N)◦πL = πK◦ĝ, where πx denotes the projectionA[x×N ]→ x⊗N .
Since πL is surjective, we have

ker(g ⊗N) = πL(ker((g ⊗N) ◦ πL)) = πL(ker(πK ◦ ĝ)) = πL(ĝ
−1(ker(πK)))

Now, ker(πK) is generated by all of the tensor relations:

(k + k′, n)− (k, n)− (k′, n), (k, n+ n′)− (k, n)− (k, n′), a(k, n)− (ak, n), a(k, n)− (k, an)

5



So, the preimage under ĝ is generated by the preimage of these generators and the kernel of ĝ itself. The
preimages are precisely the tensor relations of L⊗N since g is surjective, i.e. all of these relations:

(ℓ+ ℓ′, n)− (ℓ, n)− (ℓ′, n), (ℓ, n+ n′)− (ℓ, n)− (ℓ, n′), a(ℓ, n)− (aℓ, n), a(ℓ, n)− (ℓ, an)

Further, ĝ is a map between free modules, so the kernel is generated by elements of the form x− x′ with
x, x′ among the basis and ĝ(x) = ĝ(x′). I.e. for elements ℓ, ℓ′ ∈ L and n ∈ N with g(ℓ) = g(ℓ′), the kernel
is generated by (ℓ, n)− (ℓ′, n).

Finally, we map all of these generators back under πL. The tensor relations all map to zero in L ⊗ N
essentially by definition. So, ker(g⊗N) is generated by ℓ⊗n−ℓ′⊗n for g(ℓ) = g(ℓ′). But then g(ℓ−ℓ′) = 0,
so ℓ− ℓ′ ∈ ker(g) = im(f) by exactness, so that there is somem ∈M with f(m) = ℓ− ℓ′. But then,

(f ⊗N)(m⊗ n) = f(m)⊗ n = (ℓ− ℓ′)⊗ n = ℓ⊗ n− ℓ′ ⊗ n

is in the image of (f ⊗N).

Exercise (1.3.I).

Proof. First, suppose (T ′, t′ : M ×N → T ′) has the same property, i.e. it is initial among A-bilinear maps
fromM ×N . Then, since (T, t) is initial in this way, we get a map f : T → T ′ and since (T ′, t′) is initial,
we get a map g : T ′ → T such that t′ = f ◦ t and t = g ◦ t′. Then,

idT ◦t = t = g ◦ t′ = g ◦ (f ◦ t) = (g ◦ f) ◦ t

and so the uniqueness property of factorizations out of (T, t) gives idT = g ◦ f . Doing the same with t′

gives f ◦g = idT ′ . Thus f and g are isomorphisms. Furthermore, they are uniquely determined since there
is a unique map f with t′ = f ◦ t in the first place.

Exercise (1.3.J).

Proof. Let f : M × N → L be an A-bilinear map and let t : M × N → M ⊗ N be the usual map
(m,n) 7→ m ⊗ n. Then f lifts to a map on the free module f̂ : A[M × N ] → L via f̂(x) = f(x) for all
x ∈ M × N and extended A-linearly. Now, I claim that all of the tensor relations are in the kernel of f̂ .
Indeed, form,m′ ∈M , n, n′ ∈ N , and a ∈ A, we have:

f̂((m+m′, n)− (m,n)− (m′, n))

= f(m+m′, n)− f(m,n)− f(m′, n)

= f(m,n) + f(m′, n)− f(m,n)− f(m′, n) = 0

f̂((m,n+ n′)− (m,n)− (m,n′))

= f(m,n+ n′)− f(m,n)− f(m,n′)

= f(m,n) + f(m,n′)− f(m,n)− f(m,n′) = 0

f̂(a(m,n)− (am, n)) = af(m,n)− f(am, n) = af(m,n)− af(m,n) = 0

f̂(a(m,n)− (m, an)) = af(m,n)− f(m, an) = af(m,n)− af(m,n) = 0

using repeatedly that f̂ extends f viaA-linearity and that f isA-bilinear. So, f̂ factors through the quotient
by these relations, which is precisely the tensor product we’ve defined. I.e. there is a map g : M ⊗N → L

with f̂ = g ◦ π, where π is the quotient map.
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Now, for (m,n) ∈M ×N , we have:

(g ◦ t)(m,n) = g(m⊗ n) = g(π(m,n)) = f̂(m,n) = f(m,n)

so that g◦t = f is the desired factorization. Finally, we wish to show g is unique. Suppose h : M⊗N → L
also satisfies h ◦ t = f . Then, form ∈M and n ∈ N ,

h(m⊗ n) = h(t(m,n)) = f(m,n) = g(t(m,n)) = g(m⊗ n)

and so g and h agree on simple tensors. Hence, by linearity, they agree on all ofM⊗N , so that h = g.

Exercise (1.3.K).

Proof. Note that f makes B an A-module, and so the tensor B ⊗A M makes sense and is an A-module.
Now, for b ∈ B, define:

b ·

(∑
i

bi ⊗mi

)
=
∑
i

(bbi)⊗mi

We want to see that this makes B⊗AM into a B-module. It is clear that for x ∈ B⊗M and for b, b′ ∈ B,
that b · (b′ · x) = (bb′) · x from the definition above and the associativity of multiplication in B. The
definition is also clearly linear in B ⊗M , since b acts on each summand separately. So, indeed the tensor
is a B-module.

We’d like to show this is functorial in M . First, note that if f : M → N is a morphism of A-
modules, then we get a map idB ⊗f : B ⊗A M → B ⊗A N . By checking on simple tensors, we see
that idB ⊗ idM = idB⊗M . Further, if f : M → N and g : N → L are two morphisms of A-modules, then
idB ⊗(g ◦ f) = (idB ⊗g) ◦ (idB ⊗f) by again checking on simple tensors. So this indeed gives a functor
from the category of A-modules to that of B-modules.

Now, we give B ⊗A C a ring structure by defining the product of simple tensors by (b⊗ c)(b′ ⊗ c′) =
(bb′) ⊗ (cc′) and extending linearly. Since the definition is via linear extension, we immediately get that
the product distributes over addition. Further, commutativity and associativity of multiplication follow
from commutativity and associativity in each factor. Finally, 1 ⊗ 1 is the unity, so indeed we have a ring
structure.

Exercise (1.3.L).

Proof. Consider the map f̃ : S−1A ×M → S−1M by (a/s,m) 7→ (am)/s. This is A-bilinear, so we get
a map f : S−1A ⊗A M → S−1M . Conversely, consider the map g̃ : M → S−1A ⊗A M by m 7→ 1 ⊗m.
Then S acts invertibly on the codomain, so this map factors through g : S−1M → S−1A ⊗A M . I claim
this gives our isomorphism(s).

Indeed, form/s ∈ S−1M , we have

f(g(m/s)) = f(g(m/1)/s) = f(g̃(m)/s) = f((1⊗m)/s) = f((1/s)⊗m) = (1m)/s = m/s

so f ◦ g is the identity on S−1M . For a/s⊗m ∈ S−1A⊗A M , we have:

g(f(a/s⊗m)) = g((am)/s) = g(am/1)/s = (1⊗ am)/s = a(1⊗m)/s = (a⊗m)/s = (a/s)⊗m

so g ◦ f is the identity on simple tensors, and hence on the full domain. So, the maps are mutual inverses.
They are both A-module and S−1A-module homomorphisms, so the two are isomorphic as both A- and
S−1A-modules.
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Exercise (1.3.M).

Proof. Let P =
⊕

i Ni. We wish to show that M ⊗ P ∼=
⊕

i(M ⊗ Ni). So, we should show that M ⊗ P
satisfies the universal property of the direct sum. First, we need inclusion maps. Note that for each i, we
have an inclusion map fi : Ni → P . So, we get a map idM ⊗fi : M ⊗ Ni → M ⊗ P . These are the
proposed inclusions.

To show that it satisfies the universal property, suppose that we have an A-module Q and morphisms
gi : M ⊗Ni → Q for each i. For each i andm ∈M , we get a map φm,i : Ni → Q by n 7→ gi(m⊗n), each
of which is an A-module homomorphism. So, by the universal property of P , we get a unique morphism
φm : P → Q with φm ◦ fi = φm,i. Now, I claim φ : M × P → Q given by (m, p) 7→ φm(p) is A-bilinear.
The A-linearity in P is obvious, since each φm is A-linear. Then, for a, b ∈ A, ℓ,m ∈ M , an index i, and
n ∈ Ni we have:

φaℓ+bm,i(n) = gi((aℓ+ bm)⊗ n)

= agi(ℓ⊗ n) + bgi(m⊗ n)

= aφℓ,i(n) + bφm,i(n)

= (aφℓ + bφm)(fi(n))

= ((aφℓ + bφm) ◦ fi)(n)

So, aφℓ+bφm : P → Q satisfies the unique property of φaℓ+bm, i.e. they must be equal. This gives linearity
in the first coordinate:

φ(aℓ+ bm, p) = φaℓ+bm(p) = (aφℓ + bφm)(p) = aφℓ(p) + bφm(p) = aφ(ℓ, p) + bφ(m, p)

So, φ factors as a morphism h : M ⊗ P → Q with h(m⊗ p) = φ(m, p) for all m ∈M and p ∈ P .
Finally, we claim that gi = h ◦ (idM ⊗fi) for each i. It suffices to show this on simple tensors. So, let

m ∈M and n ∈ Ni. Then,

(h ◦ (idM ⊗fi))(m⊗ n) = h(m⊗ fi(n)) = φ(m, fi(n)) = φm(fi(n)) = φm,i(n) = gi(m⊗ n)

as claimed.
To finish the proof of the universal property, we want to show that h is uniquely determined. Suppose

h′ : M⊗P → Qwith h′ ◦ (idM ⊗fi) = gi for all i. Form ∈M , define h′
m : P → Q by h′

m(p) = h′(m⊗p).
For each m ∈M , index i, and n ∈ Ni, we have:

h′
m(fi(n)) = h′(m⊗ fi(n)) = (h′ ◦ (idM ⊗fi))(m⊗ n) = gi(m⊗ n) = φm,i(n)

So h′
m satisfies the unique property of φm, i.e. h′

m = φm. So, for eachm ∈M and p ∈ P , we have:

h′(m⊗ p) = h′
m(p) = φm(p) = φ(m, p) = h(m⊗ p)

and since they agree on simple tensors, they agree everywhere: h′ = h. This completes the proof.

Exercise (1.3.N).

Proof. We have the projection maps π1, π2 from X ×Z Y to each of X and Y , and the square commutes
by definition, since for (x, y) ∈ X ×Z Y , we have α(π1(x, y)) = α(x) = β(y) = β(π2(x, y)).

Further, it is initial with respect to this property. Indeed, let S be any set with maps f : S → X and
g : S → Y with α ◦ f = β ◦ g. Then, define F : S → X ×Z Y by F (s) = (f(s), g(s)). This indeed has
the stated codomain since for all s ∈ S, α(f(s)) = β(g(s)), so (f(s), g(s)) ∈ X ×Z Y . Further, F factors
through the projections, since π1(F (s)) = π1(f(s), g(s)) = f(s) and π2(F (s)) = π2(f(s), g(s)) = g(s).
I.e. f = π1 ◦ F and g = π2 ◦ F .

Finally, F is unique, for if G : S → X ×Z Y satisfies f = π1 ◦G and g = π2 ◦G, then for each s ∈ S,
we have G(s) = (f(s), g(s)) = F (s), so G = F .
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Exercise (1.3.O).

Proof. Given two open subsets U, V of X , the union U ∪ V is the fiber product.

Exercise (1.3.P).

Proof. Let Z be the final object, X, Y be arbitrary, and let F = X ×Z Y and P = X × Y . For each
objectW , let fW : W → Z denote the unique morphism fromW to Z guaranteed by Z being final. Then,
note that we have projections πX : P → X and πY : P → Y , so we can compose to get morphisms
fX ◦ πX : P → Z and fY ◦ πY : P → Z . Since there is a unique morphism to Z from any given object,
we have

fX ◦ πX = fP = fY ◦ πY

But then, the universal property of F as the fiber product tells us that the maps from P factor through F .
I.e. we have a map g : P → F with πX = pX ◦ g and πY = pY ◦ g, where pX : F → X and pY : F → Y
are the fibered projections.

Conversely, the maps pX and pY factor through P , since it is final with respect to having maps to X
and Y . I.e. there is a morphism h : F → P with pX = πX ◦ h and pY = πY ◦ h.

Then, we claim g, h are inverses. First, note that

πX ◦ (h ◦ g) = pX ◦ g = πX and piY ◦ (h ◦ g) = pY ◦ g = πY

But there is a unique map P → P that factors πX , πY through themselves by definition of the product,
and the identity map also satisfies this constraint. I.e. h ◦ g = idP . Second, we have:

pX ◦ (g ◦ h) = πX ◦ h = pX and pY ◦ (g ◦ h) = πY ◦ h = pY

and again, the definition of the fiber product says that there is a unique map F → F that factors in this
way, namely idF , so g ◦ h = idF .

Exercise (1.3.Q).

Proof. To avoid overly cumbersome notation, we will denote the depicted arrows by fAB : A → B for
each of the seven pairs A,B in the diagram. Now, we’d like to show the overall square is Cartesian, so
let T be an object with morphisms g : T → Y and h : T → V such that fY Z ◦ g = (fXZ ◦ fV X) ◦ h.
Reparenthesizing gives fY Z ◦ g = fXZ ◦ (fV X ◦ h), and so by the fact that W is the fiber product along
fXZ and fY Z , we get a unique morphism j : T → W with g = fWY ◦ j and fV X ◦ h = fWX ◦ j.

But this equation gives maps of T into the Cartesian diagram with product U . I.e. it further gives a
unique map m : T → U with h = fUV ◦m and j = fUW ◦m. Finally, this gives the overall factorization
we needed, since:

(fWY ◦ fUW ) ◦m = fWY ◦ j = g and fUV ◦m = h

as desired. Further, such a map is uniquely determined by uniqueness of j,m in the construction (I’ve
omitted the details, but its a further diagram chase).

Exercise (1.3.R).

Proof. Note that it suffices to describe the dashed morphisms in the below diagram

X1 ×Y X2 X1

X2 Z
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that make it commute, where the maps to Z are the compositions Xi → Y → Z . But this is obvious;
take the dashed maps to be the projections X1 ×Y X2 → Xi, and note that the diagram commutes since
the maps X1 ×Y X2 → Xi → Y are independent of i, and we’ve simply composed these with the map
Y → Z .

Exercise (1.3.S).

Proof. For notation, let fi : Xi → Y and g : Y → Z be the given maps, let PY = X1 ×Y X2, and let
PZ = X1×Z X2. Now, suppose we have an object A with morphisms r : A→ PZ and s : A→ Y making
the appropriate square commute. Then, expanding out the morphisms, we have a (large) commutative
diagram:

Y

A

PZ X1

X2 Y ×Z Y Y

Y Z

idY

idY
s

r

p1

p2
f1

f2 g

g

(The one arrow is dotted for legibility, rather than existence or some other mathematical reason). In
particular, we see that the commutative square is the top-left of this diagram, with the two compositions
from A to Y ×Z Y . We can see, by inspection, two morphisms hi : A → Xi, namely the compositions
pi ◦ r. To get a morphism A → PY , we want to show that further composing each with fi give the same
map overall. But again, the diagram shows fi ◦ hi = idY ◦s = s, so they are indeed the same map. So, we
get a unique map t : A→ PY making the following commute:

A

PY

PZ X1

X2 Y

Z

h1
t

h2

u

p2

p1

f1

f2

g

Note that we’ve added in the morphism u from the previous problem since it appears along the top of the
magic diagram and we need to argue about it. Indeed, we first should show that u ◦ t = r. But for this,
note that

pi ◦ (u ◦ t) = hi = pi ◦ r
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Since PZ is the fiber product, we have a unique morphism A→ PZ that factors in this way through both
pi, and so this gives u ◦ t = r. Then, also, we get that the leftmost morphism in the magic diagram is
fi ◦ pi ◦ u for either i, and so

(fi ◦ pi ◦ u) ◦ t = fi ◦ pi ◦ r = fi ◦ hi = s

as desired. In other words, the following commutes:

A

PY PZ

Y Y ×Z Y

r

s

t

u

fi◦pi◦u

which is the morphism we want for this diagram to be Cartesian.
Finally, we want that t is unique, i.e. if we have another morphism t′ : A → PY with r = u ◦ t′ and

s = (fi ◦ pi ◦ u) ◦ t, then we want to show t′ = t. But the definition of t was the unique map A → PY

with hi = (pi ◦ u) ◦ t for each i, while:

(pi ◦ u) ◦ t′ = pi ◦ r = (pi ◦ u) ◦ t

so that t′ also satisfies the criteria. I.e. t = t′, and so we’ve shown a unique map A → PY making the
above commute. In other words, PY is the fiber product of PZ → Y ×Z Y and Y → Y ×Z Y .

Exercise (1.3.T).

Proof. Given two setsA,B, we havemorphisms i : A→ A⊔B and j : B → A⊔B given by the inclusions.
Then the disjoint union is initial with respect to these maps, for if C is a set with maps f : A → C and
g : B → C , then we get a map h : A ⊔B → C given by:

h(x) =

{
f(x) if x ∈ A

g(x) if x ∈ B

and then f = h ◦ i and g = h ◦ j. Finally, it is clear that h is unique.

Exercise (1.3.U).

Proof. Suppose we have maps from B and C to some other ring R, such that the two compositions from
A → R agree. Then these factor as a single map B × C → R by the universal property of the product.
But this overall map is then also A-bilinear, and so it further factors as a map B ⊗A C → R. It is fairly
clear that this final map is unique, giving that the tensor is the fibered coproduct.

Exercise (1.3.V).

Proof. Let f : W → X and g : X → Y be monomorphisms, and let α1, α2 : Z → W be two maps such
that (g ◦ f) ◦ α1 = (g ◦ f) ◦ α2. Then, since g ◦ (f ◦ α1) = g ◦ (f ◦ α2) and g is a monomorphism, we get
that f ◦ α1 = f ◦ α2. But then f is a monomorphism, so α1 = α2. Thus, g ◦ f is a monomorphism.

Exercise (1.3.W).
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Proof. First, suppose that π : X → Y is a monomorphism. We’d like to show that the fibered product
exists and is isomorphic toX via the canonical map. So, we will show thatX itself (along with the identity
maps to itself) satisfies the criterion of being the fibered product. Let Z be an object with two morphisms
f : Z → X and g : Z → X such that π ◦ f = π ◦ g. Then, since π is a monomorphisms, we get f = g. So,
we can fill in the dashed arrow in the following diagram with f itself:

Z

X X

X Y

f

g
id

id π

π

and in fact is the only way to fill it in, since any morphism h making the diagram commute satisfies
π ◦ h = π ◦ id ◦h = π ◦ f and so h = f since π is a monomorphism. So X ∼= X ×Y X .

Conversely, suppose that π is such that X ×Y X exists and that the map X → X ×Y X induced
by the identity maps on X is an isomorphism. In particular, this means that we can consider X to be
the fibered product, with the projection maps given by the identity maps. We’d like to show that π is a
monomorphism. So, let f, g : Z → X be two maps with π ◦ f = π ◦ g. By the universal property of the
fibered product, we get a map h : Z → X ×Y X ∼= X such that id ◦h = f and id ◦h = g. I.e. f = g. So, π
is indeed a monomorphism.

Exercise (1.3.X).

Proof. Notice that if Y → Z is a monomorphism, then we’ve shown that the canonical map Y → Y ×Z Y
is an isomorphism. So, in the magic diagram, we have that the bottom arrow is an isomorphism, and we
wish to show the top is an isomorphism. This is a completely general fact. That is, suppose:

A B

C D

f1

f2 g2

g1

is a Cartesian square such that the g1 is an isomorphism. Then we will show f1 is an isomorphism. Note
that we have maps idB : B → B and g−1

1 ◦ g2 : B → C that satisfy:

g2 ◦ idB = g2 = g1 ◦ (g−1
1 ◦ g2)

and so the fact that this square is Cartesianmeans that we get amorphism h : B → A such that f1◦h = idB

and f2 ◦ h = g−1
1 ◦ g2.

Finally, we need to see that h ◦ f1 = idA. But

f1 ◦ h ◦ f1 = idB ◦f1 = f1

and
f2 ◦ h ◦ f1 = g−1

1 ◦ g2 ◦ f1 = g−1
1 ◦ (g1 ◦ f2) = f2

But because the diagram above is Cartesian, there is a unique morphism p : A→ A with f1 = f1 ◦ p and
f2 = f2 ◦p. The above computations show that both idA and h◦f1 satisfy this property, and so uniqueness
gives h ◦ f1 = idA. This completes the proof that f1 is an isomorphism.
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Exercise (1.3.Y).

Proof. Note that iA : Mor(A,A)→ Mor(A,A′). So, we can apply it to the morphism idA ∈ Mor(A,A) to
get a map g = iA(idA) ∈ Mor(A,A′). Now, we’d like to show this is the sought morphism g. So, let C be
an object and u ∈ Mor(C,A). Then, by assumption, the following diagram commutes:

Mor(A,A) Mor(C,A)

Mor(A,A′) Mor(C,A′)

◦u

iA iC

◦u

So,
iC(u) = iC(idA ◦u) = iA(idA) ◦ u = g ◦ u

as claimed. We’d also like to show that this condition uniquely determines g. But if h also satisfies the
desired property, then considering the case C = A and u = idA gives:

g = g ◦ idA = iA(idA) = h ◦ idA = h

so that g is indeed unique.

Now, suppose that each iC is a bijection. Then, in particular iA′ : Mor(A′, A) → Mor(A′, A′) is
surjective, so there is some h : A′ → A with iA′(h) = idA′ . I claim g and h are inverses, which will give
the claim. In one direction, from the previous work we get:

g ◦ h = iA′(h) = idA′

For the reverse, we have that the following diagram commutes:

Mor(A′, A) Mor(A,A)

Mor(A′, A′) Mor(A,A′)

◦g

iA′ iA

◦g

Then,
iA(h ◦ g) = iA′(h) ◦ g = idA′ ◦g = g = iA(idA)

Since iA is bijective, it is injective, and so we get h ◦ g = idA as desired.

Exercise (1.3.Z). Skipped upon recommendation

Exercise (1.4.A).

Proof. Let I be a poset with an initial object e and let F : I → C be a diagram indexed by I . Then
I claim that lim←−F = F (e). Indeed, given i ∈ I , we have a morphism φi : e → i and so we have a
morphism F (φi) : F (e)→ F (i). Further, for any morphism t : i→ j in I , the following commutes:

e

i j

φi
φj

t
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and so applying F gives that the following commutes

F (e)

F (i) F (j)

F (φi)
F (φj)

F (t)

as desired.
Finally, we show it is universal. Suppose M ∈ C is such that for each i, we have a morphism fi :

M → F (i) such that for each t : i→ j we have F (t) ◦ fi = fj . Then, in particular, we have the morphism
fe : M → F (e), and this is the one needed in the definition. Namely, for each i ∈ I , we have:

F (φi) ◦ fe = fi

so that F (e) and the morphisms F (φi) are indeed final.

Exercise (1.4.B).

Proof. Let A denote the proposed set and for i ∈ I , let pi : A→ Ai denote the projection. Then, if x ∈ A
andm : j → k is an arrow in I , then:

F (m)(pj(x)) = F (m)(aj) = ak = pk(x)

as desired. We need to see that A is universal with respect to this property. So, let W be a set with maps
fi : W → Ai for each i ∈ I such that F (m) ◦ fj = fk for each m : j → k in I . Then, define the map
f : W → A by (f(y))i = fi(y). This defines a map to the product, and to show it is actually a map to A,
we should show the set condition. But this is exactly the assumption:

F (m)((f(y))j) = F (m)(fj(y)) = (F (m) ◦ fj)(y) = fk(y) = (f(y))k

so f(y) ∈ A as claimed. Then it is obvious that fi = pi ◦ f for each i, so A is indeed universal.

Exercise (1.4.).

Proof.
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