
An Introduction to Lattices,
Lattice Reduction, and

Lattice-Based Cryptography
Joseph H. Silverman

Brown University

PCMI Lecture Series

July 6–10, 2020

Lecture 2. Lattice Reduction:
The Practical Problem of

Solving Hard Lattice Problems

Lattice Reduction 1

The Shortest/Closest Vector Problems

Let L be a lattice of dimension n. We recall that the two
most important computational problems are:

Shortest Vector Problem (SVP)
Find a shortest nonzero vector in L.

Closest Vector Problem (CVP)
Given a target vector t ∈ Rn, find a
vector in L that is closest to t.

• The shortest vector problem (SVP) and the closest
vector problems (CVP) are clearly closely related.
• In practice, CVP seems slightly harder than SVP, but

in any case, if the dimension of the lattice L is large,
both SVP and CVP are very difficult to solve.
• In full generality, CVP is known to be NP-hard and

SVP is NP-hard under a randomized reduction hy-
pothesis. So we settle for less.

Lattice Reduction 2

What is an Approximate Solution to SVP and CVP?

The

κ-Approximate Shortest Vector Problem

abbreviated, κ-apprSVP, is to find a vector v ∈ L so
that

‖v‖ ≤ κ min
w∈Lr0

‖w‖.

And similarly, the

κ-Approximate Closest Vector Problem

(κ-apprCVP) is to find a vector v ∈ L so that

‖v − t‖ ≤ κ min
w∈L
‖w − t‖.

The goal is to solve κ-apprSVP and κ-apprCVP for some
κ = κ(n) that’s not too large.

Lattice Reduction 3

Algorithms to Solve apprSVP and apprCVP

• The best lattice reduction methods currently known
are based on the LLL Algorithm of Lenstra, Lenstra,
and Lovász, orginally described in Mathematische
Annalen 261 (1982), 515-534

• LLL finds moderately short lattice vectors in polyno-
mial time. This suffices for many applications. Explic-
itly, LLL always solves the 2n/2−1-apprSVP problem,
and often does better.

• However, finding very short (or very close) vectors,
by which we mean solving the nc-apprSVP for some
small’ish c, still takes exponential time.

• Current lattice reduction algorithms such as LLL are
highly sequential. Thus they are not easily distribu-
table, although somewhat parallelizable. Also, there
are no known quantum algorithms that are able to
solve nc-apprSVP in less than exponential time.

Lattice Reduction 4

Variants and Improvements to LLL

Many methods have been proposed to improve LLL. Of-
ten they sacrifice provable polynomial time performance
for improved output on most lattices.

One of the most important uses

Block Korkine–Zolotareff (BKZ) Reduction.

Roughly speaking, instead of increasing the angle be-
tween pairs of vectors, as is done by LLL, the BKZ
method takes β-dimensional subspaces and finds reason-
ably orthogonal (“KZ-reduced”) bases for them.

An advantage of BKZ-LLL is that as one increases the
block size β, the output gets better. Indeed, taking β =
n gives a full KZ reduced basis for L, so it solves SVP. Of
course, the improved output comes at a cost of increased
running time.

Lattice Reduction 5

Operating Characteristics of BKZ-LLL

For a moderately large block size β, one can prove that
BKZ-LLL finds a nonzero vector v ∈ L satisfying

‖v‖ ≤
(
β

πe

)n−1
β−1

λ1(L).

In other words, BKZ with blocksize β solves κ-apprSVP

with κ ≈ (β/πe)
n−1
β−1.

This improved output comes at a cost. The running time
LLL is increased by a factor of (at least) Cβ for some
constant C.

Experimentally one finds this borne out: For a fixed
(small’ish) constant c, the time for LLL-BKZ to find a
v ∈ L satisfying

‖v‖ ≤ ncλ1(L) is exponential in n.

Lattice Reduction 6

Gram-Schmidt Orthogonalization

Before getting to the nitty-gritty of how LLL works, we
start with an easier problem:

How do you transform a basis v1, . . . ,vn
for L into an orthogonal basis of Rn?

You learned how to do that when you took linear algebra.

Gram-Schmidt Orthogonalization Algorithm

v∗1 = v1

v∗2 = v2 −
v2 · v∗1
‖v∗1‖2

v∗1

v∗3 = v3 −
v3 · v∗2
‖v∗2‖2

v∗2 −
v3 · v∗1
‖v∗1‖2

v∗1

... . . .

v∗n = vn −
vn · v∗n−1
‖v∗n−1‖2

v∗n−1 −
vn · v∗n−2
‖v∗n−2‖2

v∗n−2 · · · −
vn · v∗1
‖v∗1‖2

v∗1

Intuition:

v∗i = Projection of vi onto Span(v1, . . . ,vi−1)⊥.

Lattice Reduction 7

Lattice Reduction in Dimension 2

Idea (Gauss): Alternately subtract multiples of one
basis vector from the other until further improvement is
not possible. So we start with

L = Span{v1,v2}.

Step 1: If ‖v2‖ < ‖v1‖, then Swap v1 and v2.

Step 2: Let m =
v1 · v2

‖v1‖2
.

Step 3: If bme = 0, output {v1,v2}.
Step 4: Else replace v2 with v2−bmev1, go to Step 1.

Intuition: If we remove the closest integer sign in Step 4,
then v2 −mv1 is actually orthogonal to v1. So Step 4
does the best that it can, subject to the requirement that
the new v2 must be in L.

Theorem. v1 solves SVP, and
π

3
≤ θ(v1,v2) ≤ 2π

3
.

Lattice Reduction 8

Lattice Reduction in Dimension 2 Illustrated

Here is a picture illustrating a single reduction step when

‖v1‖ < ‖v2‖.

v1

v2

v∗2 = v2 −mv1
v2 − bmev1

︸ ︷︷ ︸
m=v1·v2

/‖v1‖
2

• m = v1 · v2/‖v1‖2 is the exact factor to make

(v2 −mv1) ⊥ v1.

• In other words,

v∗2 := v2 −mv1 = projection of v2 onto v⊥1 .

• Rounding m to the nearest integer yields

bme 6= 0 =⇒ v2 − bmev1 is better than v2.

Lattice Reduction 9

The Size and Quasiorthogonality Conditions

If some coefficient in the Gram-Schmidt process satisfies

|vi · v∗j |
‖v∗j‖2

>
1

2
,

then we can improve the basis, i.e., make it more orthog-
onal, by replacing vi with vi − avj for an appropriate
a ∈ Z. A basis satisfies the Size Condition if

Size Condition:
|vi · v∗j |
‖v∗j‖2

≤ 1

2
for all j < i.

To balance this, we want the basis vectors to be some-
what orthogonal to one another, so we impose the

QuasiOrthogonality Condition: ‖v∗i+1‖ ≥
√

3

2
‖v∗i ‖.

Lattice Reduction 10

The Lovász Condition

Theorem. (Hermite) Every lattice has a basis satisfy-
ing both the Size Condition and the QuasiOrthogonality
Condition.

Unfortunately, the best known algorithms to find such a
basis are exponential in the dimension.

So we relax the QuasiOrthogonality Condition to

Lovász Condition: ‖v∗i+1‖ ≥

√
3

4
−
|vi+1 · v∗i |2

‖v∗i ‖4
‖v∗i ‖.

What a mess, right! But geometrically the Lovász Con-
dition says that

Projection of vi+1 onto Span(v1, . . . ,vi−1)⊥

≥ 3

4
· Projection of vi onto Span(v1, . . . ,vi−1)⊥.

Lattice Reduction 11

The LLL Algorithm

Theorem. (Lenstra,Lenstra,Lovász) There is a poly-
nomial time algorithm that finds a basis for L satisfying
both the Size Condition and the Lovász Condition. Such
bases are called LLL Reduced Bases.

[1] k = 2
[2] LOOP WHILE k < n
[3] Replace v1, . . . ,vk with linear combi-

nations so the Size Condition is true

[4] If the Lovász Condition is false

[5] Swap vk ↔ vk−1 and set k = k − 1
[6] Else

[7] Set k = k + 1
[8] If k = n, then basis is LLL reduced

[9] END LOOP

The Basic LLL Algorithm

Lattice Reduction 12

Operating Characteristics of LLL

• If k = n in Step 8, then the basis is LLL reduced.

• Step 7 helps us by incrementing k. But there is a
countervaling force because the Swapping Step (Step 5)
decrements k.

• One can prove that Step 5 is executed only finitely
many times and that the number of executions is
bounded by a polynomial in n.

• The LLL algorithm is guaranteed to find a v ∈ L
satisfying

0 < ‖v‖ ≤ 2n/2−1λ1(L).

Thus LLL is a polynomial-time algorithm that solves
the 2n/2−1-apprCVP problem.

• In practice, LLL generally does better than 2n/2−1.
But also in practice, if n is large, then LLL will not
solve the nc-apprCVP.

Lattice Reduction 13

The LLL Algorithm (unoptimized)

[1] Input: A basis {v1, . . . ,vn} for a lattice L
[2] Set k = 2

[3] Loop while k ≤ n

[4] Loop Down j = k − 1, k − 2, . . . , 2, 1

[5] Set vk = vk − bµk,jevj [Size Reduction]

[6] End j Loop

[7] If ‖v∗k‖
2 ≥

(
3
4 − µ

2
k,k−1

)
‖v∗k−1‖

2 [Lovász
Condition]

[8] Set k = k + 1

[9] Else
[10] Swap vk−1 and vk [Swap Step]

[11] Set k = max(k − 1, 2)

[12] End If
[13] End k Loop
[14] Output: The LLL reduced basis {v1, . . . ,vn}

Lattice Reduction 14

The LLL Algorithm — Notes

• At each step, v∗1, . . . ,v
∗
k is the orthogonal set of vec-

tors in Rk obtained by applying the Gram–Schmidt
algorithm to the current values of v1, . . . ,vk, and

µi,j = (vi · v∗j)/‖v
∗
j‖

2 for i > j.

• When the loop at Steps 4–6 ends, the vectors v1, . . . ,vk
satisfy the Size Condition.
• At Step 7, we know that v1, . . . ,vk−1 satisfy the

Lovász Condition, so we check if the Lovász Condition
is true when we adjoin vk to the list. If it is, we move
on to vk+1. If not, then vk is “better” than vk−1, so
we swap them.
• The big outer k-loop from Steps 3 to 13 ends when
k = n, at which point v1, . . . ,vn has been size re-
duced and passed the Lováscz condition, to it is an
LLL reduced basis.

Lattice Reduction 15

Proof Sketch that LLL Works as Advertised

The goal is to show that the LLL algorithm terminates,
and to estimate the number of steps that it takes. For
ease of exposition, we assume that L ⊆ Zn.

Proof Idea: Define a function

D : {bases v1, . . . ,vn for L} −→ R≥1

that measures the “complexity” of a basis. Prove that

Lováscz cond-
ition false

=⇒ D

[
basis af-
ter swap

]
≤
√

3

2
D

[
basis be-
fore swap

]
It follows that

D

[
basis after swap step has
been executed k times

]
≤
(√

3

2

)k
D

[
original
basis

]
But D(B) ≥ 1 for any basis, so the swap step is executed

≤ logD[original basis]

log 2/
√

3
times

Lattice Reduction 16

Measuring the Complexity of a Basis

For a basis B = {v1, . . . ,vn} for L, let

L` := Span{v1, . . . ,v`}.
Note that L` ⊂ Zn implies that Det(L`)

2 ∈ N. Let

D[B] :=

n∏
`=1

Det(L`).

Let v∗1, . . . ,v
∗
n be the associated Gram-Schmidt vectors.

Det(L`) =
∏̀
i=1

‖v∗i ‖, D[B] =

n∏
i=1

‖v∗i ‖
n+1−i.

Then D[B] ≥ 1 for all bases, and

D[B] ≤
(

max
1≤i≤n

log ‖v∗i ‖
)n(n+1)

2 ≤
(

max
v∈B

log ‖v‖
)n(n+1)

2
.

Hence LLL terminates in at most O(n2 log ‖B‖) steps.

Lattice Reduction 17

Lováscz False Implies Swap Reduces Complexity

Assume Loáscz is false at Step k:

‖v∗k‖ <
√

3

4
− µ2

k,k−1 · ‖v
∗
k−1‖ ≤

√
3

2
‖v∗k−1‖.

Swapping vk and vk−1 has the effect:

Det(Lnew
k−1) = ‖v∗1‖ · ‖v

∗
2‖ · · · ‖v

∗
k−2‖ · ‖v

∗
k‖

= ‖v∗1‖ · ‖v
∗
2‖ · · · ‖v

∗
k−2‖ · ‖v

∗
k−1‖ ·

‖v∗k‖
‖v∗k−1‖

= Det(Lold
k−1) ·

‖v∗k‖
‖v∗k−1‖

≤
√

3

2
Det(Lold

k−1).

Hence D[Bnew] =

(∏
i 6=k−1

Det(Lold
i)

)
· Det(Lnew

k−1)

≤
√

3

2

∏
1≤i≤n

Det(Lold
i) =

√
3

2
D[Bold].

Lattice Reduction 18

LLL Reduced Bases Are Pretty Good

Okay, now we can find an LLL reduced basis in polyno-
mial time. How good is an LLL reduced basis?

Theorem. (LLL) Let v1, . . . ,vn be an LLL reduced
basis for L.

(a) ‖v1‖ ≤ 2(n−1)/2λ1(L).

(b)

n∏
i=1

‖vi‖ ≤ 2n(n−1)/4 Det(L).

Proof Sketch of (b):
The Lovász condition and |µi,i−1| ≤ 1

2 give

‖v∗i ‖
2 ≥

(
3

4
− µ2

i,i−1

)
‖v∗i−1‖

2 ≥ 1

2
‖v∗i−1‖

2.

Applying repeatedly yields

‖v∗j‖
2 ≤ 2i−j‖v∗i ‖

2.

Lattice Reduction 19

LLL Reduced Bases Are Pretty Good (continued)

We now compute

‖vi‖2 =

∥∥∥∥v∗i +

i−1∑
j=1

µi,jv
∗
j

∥∥∥∥2

from Gram–Schmidt,

= ‖v∗i ‖
2 +

i−1∑
j=1

µ2
i,j‖v

∗
j‖

2 since v∗1, . . . ,v
∗
n

are orthogonal,

≤ ‖v∗i ‖
2 +

i−1∑
j=1

2i−j‖v∗i ‖
2

4

since |µi,j| ≤ 1
2 and

‖v∗j‖
2 ≤ 2i−j‖v∗i ‖

2,

≤ 2i−1‖v∗i ‖
2.

Multiplying over 1 ≤ i ≤ n yields
n∏
i=1

‖vi‖2 ≤
n∏
i=1

2i−1‖v∗i ‖
2 = 2n(n−1)/2 Det(L)2.

An Introduction to Lattices,
Lattice Reduction, and

Lattice-Based Cryptography
Joseph H. Silverman

Brown University

PCMI Lecture Series

July 6–10, 2020

