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My work appearing in this talk was predominantly completed on the lands of the 

Coast Salish, Duwamish, Stillaguamish, and Suquamish nations, & I am 

reporting on it from the lands of the East Shoshone and Ute nations.
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 x ↦ x*α  (xv) ↦ (x*v α)

 α ∈ Br X

Quadratic reciprocity (& higher order generalizations)

 carve out a  (non-obvious) refined obstruction set

X(k) ⊂ X(𝔸k)Br ⊂ X(𝔸k)
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  0 →
Br1 X
Br0 X

→
Br X
Br0 X

→
Br X
Br1 X

→ 0

0 →
Br1 X
Br0 X

→ H1(k, Pic X) → H3(k, k×)

0 →
Br X
Br1 X

→ (Br X)Gal(k/k) → H2(k, Pic X)

exact
~
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(assuming we’ve computed )Br X/Br0 X

Let  and let  be a place of .α ∈ Br X v k

Then  is locally constant,evα : X(kv) → ℚ/ℤ
and if , then  is constant.αkur

v
= 0 evα

However, “unless there is a reason why not”, 

often have  for some .im evα = ord(αv)−1ℤ/ℤ v

WARNING: Examples in the literature 
(and in the exercises) are rigged so 

that computations simplify!
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but is often HARD.

X(𝔸k)Br

What does the theory tell us 
about why this is hard?
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Theorem[Harari ’94]
Given a family of varieties , 

with  trivial, but   nontrivial and […],


 , such that .

𝒱 → 𝔸1

Br 𝒱 Br 𝒱η
∃∞ t0 ∈ 𝔸1(k) 𝒱t0(𝔸k)Br ⊊ 𝒱t0(𝔸k)
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Theorem[Bright ’15]
Let  &  be such that 


 has order ,  and […], 

     then  has image .


α ∈ Br X v ∤ ord(α)
∂v(α) n #𝔽v > > 0

evαv

1
n ℤ/ℤ
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Examples:

•  deg.  genus curve 


 completely captures

• [Swinnerton-Dyer ’99]


  cubic surface   completely captures.

• [Colliot-Thélène, Poonen ’00]


 cubic or quartic del Pezzo   that captures.

C d 1
⇒(Br C/Br0C)[d∞]

X ⇒ (Br X/Br0X)[3]

X ⇒ ∃α ∈ Br X
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ℬ
X(𝔸k)ℬ

Want: intrinsically described ℬ ⊂ Br X

[SD ’99 + CTP’00]  cubic surface   
completely captures and  that captures.

X ⇒ (Br X/Br0X)[3]
∃α ∈ Br X[3]

(Br X/Br0X) ≃ {0}, ℤ/2ℤ, ℤ/3ℤ, (ℤ/2ℤ)2, or (ℤ/3ℤ)2
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generatedDivisible

0 → (Pic0X)[n] → Pic0X ×n Pic0X → 0

Hi−1 (Gk, Pic0X) → Hi (Gk, (Pic0X)[n]) → Hi (Gk, Pic0X)[n] → 0

when , used in descent on abelian varietiesi = 1
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Ideally, find a  that captures or completely 
captures and  (more) easily computable.

ℬ
X(𝔸k)ℬ

E.g., 

,   ,   etc.

ℬ = Br X[n], (Br X/Br0X)[n], (Br X/Br0X)[n∞]
Br1X Br1X[n]

At least no more difficult? 
Methods often already start by computing  for such .X(𝔸k)ℬ ℬ
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[Creutz, Viray , Voloch ’18]  C curve of genus  ≥ 2

The bad

A subgroup that captures the Brauer-Manin 
obstruction likely depends on more than the 

genus and the degree.

May be hard to say anything about a 
capturing subgroup a priori.
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del Pezzo surfaces ( ) or conic bundles1 ≤ deg ≤ 9

Rational surfaces

 conic bundleX

 generates Br X[2] Br X/Br0X

What collection of elements are necessary?

 can be arbitrarily largeBr X/Br0X
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Does  capture? Is there a general negative result?Br [6∞]

[Skorobogatov ’18, following S, Zarhin ’17 and CV’18] 

 Kummer surface   completely captures.Y ⇒ Br Y[2∞]

[Gvirtz, Loughran, Nakahara] 

 K3 such that  does not capture.∃ Br [2∞]

[Berg, Várilly-Alvarado ‘20] 

 deg 2 K3 of Picard rank 1 s.t.  likely doesn’t capture.∃ Br [2∞]
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Lecture 2 summary

, 

for some finite 
X(𝔸k)B = ∅

B
⇒ X(𝔸k)Br = ∅

 projective X

Sometimes characteristics of  can be determined a priori.B
(if  is related to abelian varieties.)X

Probably not in general
Where is the dividing line?


