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(assuming we've computed Br X/Brj X)

Let
WARNING: Examples in the literature

(and in the exercises) are rigged so
that computations simplify!

WA/ / ’ > [ [ \_J A y \_J ’

often have 1m cv, = Or d(av)_IZ/ Z forsomev.
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 \What does the theory tell us
about why this is hard?




there 1s no free lunch
1diom

e Save Word

Definition of there is no free lunch

—used to say that it is not possible to get something that is
desired or valuable without having to pay for it in some way
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Theorem[Harari '94]

Given a family of varieties 7 — A,
with and [...],

Joo 1, € Al(k), such that WtO(Ak)Br C 7, (Ap.
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Theorem|[Bright "15]

Leta € Br X & v 1 ord(a) be such that
and [...],
then ev, hasimage %Z/ Z.
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should expect X(A )" C X(A)).

Theorem[Pagano, following Bright-Newton]

There exists a K3 surface X with a place of good
reduction v and an @ € Br X such that ev,, is non-

constant and X(A,)" C X(A,).
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When computing X(A k)Br,
cannot bypass computing, eV, for all
a € BrX /ker(Br X, —» BrX")
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(oal: determine whether X (A k)Br =+ .

Why may this be simpler?
X(Ak)ﬁf = O
X projective = X(A ) compact = XA = &,

for some finite B
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Ideally, find a &3 that captures or completely
captures and X(A k)‘@ (more) easily computable.

~

)

Examples:
e (Cdeg.dgenus lcurve
= (Br C/Br,C)[d*] completely captures
e |Swinnerton-Dyer 99|
X cubic surface = (Br X/BryX)[3] completely captures.
o |Colliot-Thélene, Poonen '00]

X cubic or quartic del Pezzo = da € Br X that captures.
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Ideally, find a &3 that captures or completely
captures and X(A k)‘@ (more) easily computable.
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[SD 99 + CTP'O0] X cubic surface = (Br X/BryX)[ 3]
completely captures and da € Br X[ 3] that captures.

(BrX/BryX) ~ {0},Z/27,7/3Z,(Z127Z)*, or (Z/37Z)*
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cxact
Bry X \—1

— Hl(ka Pic )_() 0O — Br X — (Br X)Ca&h _, H2(k. Pic X
Bro X Br1 X ( ) ( , )
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The good

| ]
Viwist of AV = Br V[per(V)*] completely captures.

[ ]
Y Kummer variety = Br Y[2%°] completely captures.

| |
. X — P"fibration of twists of AV =

Br X[per(X,)>] completely captures.
| Creutz 20| Viitwist of AV = B(V) completely captures.
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The bad

| Creutz, Viray, Voloch 18] C curve of genus > 2

A subgroup that captures the Brauer-Manin
obstruction likely depends on more than the
ogenus and the degree.

May be hard to say anything about a
capturing subgroup a priori.



The open
(questions)
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Rational surfaces

del Pezzo surfaces (1 < deg < 9) or conic bundles

X conic bundle

Br X[2] generates Br X/BryX
Br X/BryX can be arbitrarily large

What collection of elements are necessary?
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K3 surfaces

| Skorobogatov 18, following S, Zarhin '17 and CV’18]
Y Kummer surface = Br Y[2%°] completely captures.

| Gvirtz, Loughran, Nakahara]
3 K3 such that Br [2*°] does not capture.

| Berg, Varilly-Alvarado 20|
d deg 2 K3 of Picard rank 1's.t. Br [2%°] /ikely doesn’t capture.

Does Br [6%°] capture? Is there a general negative result?
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|.ecture 2 summary

X projective N X( Ak)B = O,
X(Ak)Br = for some finite B

Sometimes characteristics of B can be determined a priori.

Probably not in general

Where is the dividing line?



