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Number field counting, class group heuristics, and computation

Melanie Matchett Wood

Abstract. These notes give an introduction to the asymptotic counting of num-
ber fields by Galois group and the Cohen-Lenstra heuristics for the distribution
of class groups of quadratic fields. We discuss the connection of the class group
heuristics to random matrices and discuss the moments of the conjectured distri-
bution and the role they play. We point out places where computation has been
crucial in the development of this theory, and suggest some important directions
for future computational work. We give many exercises, ranging from quite easy,
to quite difficult, including longer term projects.
Any comments, corrections, typos, etc. are very welcome at mmwood@math.harvard.edu

1. Counting number fields

1.1. Questions Number fields, i.e. finite extensions of the rational numbers Q,
are the basic objects of algebraic number theory. We can ask how many there
are, and there are infinitely many, and so we ask a more refined question. For
a number field K, we write Dk for its absolute discriminant, that is, the absolute
value of its discriminant.

Question 1.1.1. Given a positive integer d, how many isomorphism classes of number
fields of degree d and absolute discriminant at most X are there, asymptotically in X?

”Asymptotically in X” means that if Ngq(X) is the number of isomorphism
classes of number fields K of degree d over Q with Dx < X, we are looking for
an answer of the form

Na(X) = f(X) +o(f(X)),

where f(X) is some simple function, like X“(log X)® for some real numbers a, b.
We write g(X) = f(X) + o(h(X)) to mean that
- 1g(X) — (X))
lim =22 — WA
X5 h(X)
We have asked about isomorphism classes of number fields, though it is also

=0.

natural to ask about subfields of Q instead. These two questions are closely
related (see Exercise 1.1.3). We know classically that N 4(X) is finite.
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Theorem 1.1.2 (Hermite’s theorem, see, e.g., I11.2.16 in [85]). Given a real number
X, there are finitely many isomorphism classes of number fields K with |D| < X.

Exercise 1.1.3. Show that N 4(o0) is infinite for each positive integer d > 2. What lower
bound does your arqument give for N 4(X)?

There are many ways one might approach Exercise 1.1.3, and they lead in
some of the different directions of work in the area. One might give an infinite
list of fields, using polynomials or adjoining dth roots, but then one needs some
argument to make sure that the elements of the list are actually degree d fields
and distinct. One might use the theorems of class field theory, which handles
these issues well but only can access abelian fields.

Given Theorem 1.1.2, one might ask why we even fix a degree d at all. First of
all, fixing the degree makes the question have more accessible parts. However, in
addition, once we have some of the answers, e.g. for d = 2,3,4, we can see that
the various degrees have natural answers, suggesting the most natural form of
the answer for all degrees would simply be the sum over the answers for each d.
In fact, from the answers in low degree, we further see that the level at which we
have natural answers is if we fix not only a degree but also a Galois group. More
precisely, we should fix the Galois group of the Galois closure and its action of
the embeddings of the number field in Q.

Definition. A permutation group G is a group G, a set X, and a faithful action
of G on X. We often leave X implicit in the notation. An isomorphism of two
permutation groups (G, X) and (G’,X’) is a group isomorphism f: G — G’ and
a bijection h : X — X’ such that for all g € G and x € X, we have h(g(x)) =
f(g)(h(x)). The permutation group is transitive if the group action is transitive.
We say |X| is the degree of the permutation group, and that the permutation group
is finite if it has finite degree.

Exercise 1.1.4. Show that, for each n, isomorphism classes of permutation groups whose
underlying set has size n are in natural bijection with conjugacy classes of the symmetric
group Sn.

Definition. For a number field K, we write Gal(K/Q) for the permutation group
whose underlying group is Gal(K/Q), where K is the Galois closure of K over Q,
acting on the [K : Q] homomorphisms K — Q. More precisely, T € Gal(K/Q)
sends i € Hom(K, Q) to Ti.

While it might be jarring at first to write Gal(K/Q) when K is not Galois, this
is a very helpful concept and notation. For example, theorems in arithmetic
statistics show us that the degree 4 fields whose Galois closure has group Dy
behave quite differently from those whose Galois closure has group Sy.
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Exercise 1.1.5. If K is a number field, show that Gal(K/Q) acts faithfully on the [K : Q]
homomorphisms K — Q.

Exercise 1.1.6. If K is a number field, show that Gal(K/Q) is a transitive permutation
group.

Any group G acts on itself via left multiplication, and we call this permutation
group the regular representation.

Exercise 1.1.7. If K is Galois, show that the permutation group Gal(K/Q) is isomorphic
to the usual Galois group with its regular representation.

Exercise 1.1.8. Show that if G is a transitive permutation group of finite degree |G|
(equivalently a finite simply transitive permutation group), then it is isomorphic to the
underlying group in its reqular representation.

Exercise 1.1.9. Show that if A is a finite abelian group, the only transitive permutation
group structure one can put on A is the reqular representation.

Exercise 1.1.10. Find an example of two non-isomorphic transitive permutation groups
of the same degree whose underlying group is isomorphic. [Hint: the GroupNames data-
base online, or similar, might be useful.]

Exercise 1.1.10 shows why we keep track of the permutation group and not just
the group, even though in low degrees we can often refer to the transitive degree
d action of a particular group, e.g. the transitive degree 4 action of Dy. We can
now state the most common version of the counting number fields question in
arithmetic statistics.

Given a positive integer d and a transitive permutation group G of degree d,
let S be the set of isomorphism classes of number fields K with Gal(K/Q) ~ G.
We call such number fields G-extensions (or if we replace Q with a base field Ko,
we would call them G-extensions of Kp).! When a group G has a single transitive
permutation group structure (up to isomorphism) of degree d, we often write d-
ic (e.g. cubic, quartic,...) G-extensions to mean that G should be endowed with
this transitive permutation group structure. Let N g (X) be the number of K € Sg
with [Dg| < X.

Question 1.1.11. What is N g (X), asymptotically in X?

Note that the question, for a given finite group G, of whether Ng(X) is ever
at least 1, is the Inverse Galois Problem, a famously hard and open question.
However, there are many G for which we do know there exist many number
fields with Gal(K/Q) ~ G, and for some of these we can answer Question 1.1.11.
Note that if we answer Question 1.1.11 for all transitive permutation groups G

U1t is generally better practice to define a G-extension to be an isomorphism class of pairs (K, ¢)
where ¢ is a choice of isomorphism Gal(K/Q) ~ G. This inflates the number of automorphisms by
a predictable amount, but when one needs to use an isomorphism Gal(K/Q) ~ G, it is often more
convenient to have one specified. However, we try to avoid needing this in this paper for simplicity.
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of a given degree d, since there are only finitely many, we can add the results
to get an answer to Question 1.1.1. Indeed, if for one G of degree d we have
an asymptotic of f(X), to answer Question 1.1.1, it would suffice to have, for
each other G of degree d, either an asymptotic for Ng(X) or an upper bound of
o(f(X)). This approach is how we know the answer to Question 1.1.1 for d < 5
[16,18,38,45], which in each d < 5 is

Na(X) =cgX+0(X)
for some cq > 0.

Exercise 1.1.12. If K is a number field with G = Gal(K/Q) and S C G the stabilizer
of an element (i.e. one of the embeddings K — K), show that Aut(K) is isomorphic to
quotient of the normalizer of S in G by S.

Exercise 1.1.13. Given a positive integer d and a permutation group G of degree d, an a
number field K with Gal(K/Q) ~ G, show that there are exactly W subfields of Q
that are isomorphic to K.

1.2. Approaches and results The answer is Question 1.1.11 is known for many
G. For example, we consider the permutation group S; in its standard permuta-
tion action on 2 elements and N, (X) counts quadratic fields. Early in algebraic
number theory, we classify all quadratic fields, and show they are determined
by their discriminant. A quadratic field K must contain some « satisfying an
equation o« + aox — d = 0 for some a,d € Q. We can replace « with o+ a/2 and
then have a = 0. We can replace « with an integer multiple to have d € Z, but
then we can also divide « by an integer to have that d is square-free. So every
quadratic field is Q(v/d) for some square-free integer d # 1. How do we know
these fields are all in distinct isomorphism classes? Typically, we compute their
rings of integers and their discriminants, and then we can observe they all have
unique discriminants. Moreover, the discriminants that arise are exactly the set F
of integers D such that

(1) D=1 (mod 4) and D is square-free and D # 1, or

(2) D =4d, where d =2 or 3 (mod 4) and d square-free.

We will now discuss how to count these integers. We have Ng,(X) = FnN
[—X,X]. We can rewrite the above conditions defining J as above as requiring
that D =1,5,8,9,12,13 (mod 16) and that for each odd prime p, we have D # 0
(mod pz) (and that D is not 1). The problem is essentially the same in spirit as
how one could count square-free integers, but the conditions at 2 require some
additional care. For a square-free number n, let B, (X) be the number of non-zero
integers D € [—X, X] that fail our conditions at each prime dividing n, i.e. if n is
even then D (mod 16) ¢ {1,5,8,9,12,13} and for each odd prime p | n, we have
D =0 (mod p?).
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Exercise 1.2.1. Show that for all X > 2, we have
Ns,(X)=—1+ >  pm)Bn(X),
1<n<2vX

where w is the Mobius function. [Hint: consider some non-zero D € [—X, X] that fails
the conditions at primes 2,7p1,...,Px or odd primes p1,...,px. How many times is it
counted on the right-hand side?]

If X is a multiple of 4n?, then it is easy to count By, (X) exactly. Otherwise, we
can estimate. We write f(n, X) = g(n, X) + O(h(n, X)) to mean that there exists a
constant C such that for all n, X > 1 we have

[f(n, X) — g(n, X)| < Ch(n, X).

Exercise 1.2.2. If n is an odd square-free integer, show By (X) = 2L§j, and so

B (X) =225 +0(1).
n

Exercise 1.2.3. If n =2m, with m odd square-free, show By (X) = 20Lﬁj + €, where
0 < e <20, and so

Bn(X) = z%x +0(1).
n

Let d, = n? if nis odd and d = 2n2/5 if n is even. So we can conclude
X
Ns,(X)=2 3 uln)—+0(VX).
n
1<n2vX
Exercise 1.2.4. Show

2y u(n)% =2X <1 — Z) [[a-p P =c2'x

n>1 2<p
prime

Exercise 1.2.5. Show
2 Y uln)s- = O(VX)
n>2vX
The exercises above combine to show
Ns,(X) = ¢(2)7'X+ 0(VX) = ¢(2) "X + 0(X).

Exercise 1.2.6. Plot a graph of N, (X) and ¢(2)~'X, and then “zoom in” by plotting
Ns, (X) = ¢(2)7'X
VX '

Does there appear to be a “secondary term,” e.g. a function f(x) of the form cX“(log X
for reals a,b, c such that

Ns,(X) = ¢(2) 7' X+ f(X) + o(f(X))?

)b

Does there appear to be a an improved error term, e.g. a value a < 1/2 such that
Ns, (X) = ¢(2) !X+ 0(X?)?
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If the answer to the above questions is no, we can informally consider o(vX)
as a “true error term,” as opposed to the current state of knowledge. We could use
the above questions to make this a precise notion, but it does not seem precision
here is warranted, since the second question above ignores log X terms, and both
ignore loglog X and other terms that might appear.

However, even once we consider number fields of degree 3, the situation be-
comes vastly more complicated. Still each cubic field can be generated by a de-
gree 3 algebraic number « satisfying some o +pa+q = 0, for p,q € Z, but it
becomes much harder to use this to count. For one, the discriminant no longer is
quite as discriminating.

Exercise 1.2.7. Use a database (e.g. the LMFDB [77]) to find the smallest D such that
there are two non-isomorphic cubic fields of discriminant D.

However, even to get the discriminant from p, q is not something we can write
down a simple formula for because we cannot write a formula for the ring of
integers. (We can of course, give a formula for the discriminant of the ring Z[«],
but we do not know its index in the maximal order of K.) So we cannot say either
what the discriminant of the field given by (p, q) is or when (p, q) and (p’,q’)
give the same field. Remarkably, Shankar and Tsimerman [95] give a heuristic
argument following this line of reasoning that gives a predicted asymptotic for S 4-
extensions for each d by quantifying how much overcounting of fields is done and
understanding the discriminant of the maximal order in terms of local conditions.
Their approach even gives a proof when d = 3, though we will give an older
proof below.

Even though all number fields of degree d come from degree d polynomials,
this highlights the difference between understanding the (finite) set of isomor-
phism classes of number fields of bounded discriminant and understanding the
(infinite) set of polynomials of bounded discriminant (or even further contrast
with understanding the natural finite set of polynomials with bounded coeffi-
cients). This contrast plays out in many places, from theoretical results (such as
what we will see about counts of quartic D4 and S, fields below), to computa-
tional challenges in making tables of number fields (see [36,64,107]).

However, another approach of parametrizing cubic fields was used by Daven-
port and Heilbronn in 1971 [45] to give the asymptotics of N3(X) as

N3(X) = 3203)

Class field theory allows one to count Galois cubic fields, and Cohn in 1954 [42]
had shown

X+ o(X).

N, (X) = e, X2+ o(X1/2),

where we write C3 for the cyclic group of order 3 in its regular representation and
cc, is some explicit constant given by Cohn. From these results, if we write S3
for the permutation group in its standard representation on a set of 3 elements, it
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follows that

Ns,(X) = %mano(X).

Let Dy be the dihedral group of 8 elements with its action on as automorphisms
of a square on its vertices. In 2002, Cohen, Diaz y Diaz, and Olivier [38] showed

Np,(X) = cp,X+0(X),

where cp, is an explicitly given constant. Their approach was to count quadratic
extensions of quadratic fields, of which all quartic fields K with Gal(K/Q) ~ Dy
are. Bhargava [16] showed

Ns, (X) = ¢cs, X+ 0(X),

where cg, is an explicitly given constant.

It is also known that for G a transitive permutation group other than Dy, we
have Ng(X) = o(X). Thus the above two results show that asymptotically, a
positive proportion (around 17%) of quartic fields, ordered by discriminant, are
Dj-extensions, and a positive proportion (around 83%) of quartic fields, ordered
by discriminant are Sy-extensions. If we instead consider degree n polynomials
with bounded integral coefficients, asymptotically 100% have Galois group Sn.
This is suggested by Hilbert’s Irreducibility Theorem and was shown by van der
Waerden [104] (see also [19]).

Today we know the answer to Question 1.1.11 for many more G, but many of
the high-level strategies are descendants of one of these 3 approaches.

Class Field Theory Class field theory is a powerful tool for understanding
abelian extensions. In 1985, Miki [78] gave asymptotics for Ng(X) for each fi-
nite abelian group G in its regular representation, using the Kronecker-Weber
theorem. One can also see work of Frei, Loughran, and Newton [53] for a more
modern, class field theoretic approach to these asymptotics for abelian G. We
briefly outline Cohn'’s proof [42] for C3 extensions to give the flavor.

Let K be a number field. Let Cy be the idéle class group of X, i.e. ([T, K%)/K,
where the product is over places v of K, and is restricted to elements that are units
in all but finitely many places (with the restricted product topology). Let Gk be
the absolute Galois group of K. Class field theory tells us that for a finite abelian
group A, the Artin map Cx — G¢P induces a bijection

Sur(Gg,A) — Sur(Cg,A)

(where Sur denotes continuous surjective group homomorphisms). For a finite
place v the image of the local units O} is the image of the inertia group at v of
the corresponding map, and for a real place v the image of K} is the image of the
inertia group.



8 Number field counting, class group heuristics, and computation

Exercise 1.2.8. Let RY ) denote the positive reals (under multiplication). Show that the
natural map
112z xRz, - Co
P
is an isomorphism. Conclude that for a finite abelian group A, we have a bijection
Hom(Gg, A) — Hom(] [ 2}, A),
P
(where Hom denotes continuous homomorphisms) where the image of the inertia group
at p corresponds to the image of Z,.

Exercise 1.2.9. Show that Z}, has a continuous surjective homomorphism to Cs if and
only if p is 0 or 1 mod 3, in which case it has exactly two such homomorphisms.

Exercise 1.2.10. Show that a cyclic cubic field K has a square discriminant D, and if P
is the product of the rational primes ramified in X, then if 31 P then D = P? and if 3 | P,
then D = 9P2. [Hint: there are many ways to do the last part, e.g. using [85, 111.2.6],
the relationship between the class field theory conductor and the discriminant, or tables of
local fields.]

For a ¢ € Hom(Ggq, C3), we write Dy, for the absolute discriminant of the
corresponding extension of Q. Thus we can explicitly write the Dirichlet series of
C3 extensions

1 _ _
Dis)= ) ge=0+297%) J[ (+2p7)
b€Hom(Gg,C3) ¢ p=1 (mod 3)
prime

This tells us what all cyclic cubic extensions of Q, with their discriminants, are,
and it remains a question of analytic number theory of the integers to do the
asymptotic counting. This can be done by analysis of the right-most pole of D(s)
and an application of a Tauberian theorem such as the following.

Theorem 1.2.11 ([84, Corollary p. 121]). Let f(s) = > ;51 ann™° with an > 0
be convergent for s > a > 0. Assume that in the domain of convergence f(s) =
g(s)(s —a)™™ + h(s) holds, where g(s), h(s) are holomorphic functions in the closed
half plane Rs > a, and g(a) # 0, and w > 0. Then

Z an = agl“((i\)))X“(log%)w_1 +o(x*(logx)™ 1.
1<ngX

Exercise 1.2.12. Let x be a non-trivial Dirichlet character of modulus 3. Show that
D(s)
L(2s,x)C(2s)
is analytic for R(s) > 1/4. Use this and Theorem 1.2.11 to conclude Cohn’s asymptotic
for N¢,(X).

Exercise 1.2.13. Use Theorem 1.2.11 to give another proof that N, (X) = ﬁx +o(X).
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Exercise 1.2.14. Use Perron’s formula (which can be used to prove Theorem 1.2.11) to
analyze the size of N, (X) — ﬁx. How does what you find relate to what you found in
Exercise 1.2.6?

See [113, Section 8] for more examples and more detailed exposition of this
approach.

Parametrization and geometry of numbers For many years, the approach of
parametrization and geometry of number had only been applied to count cubic
fields. However, Bhargava made significant breakthroughs in parametrizations
(including the realization that resolvent rings needed to be parametrized and
the construction of integral models of these) [15,17] and geometry of numbers
(including introducing averaging methods and methods for dealing with cusps)
[16,18] that allowed him to extend this approach to count quartic fields K with
Gal(K/Q) ~ S, and quintic fields K with Gal(K/Q) =~ Ss. The work of Davenport-
Heilbronn was also the starting place for Belabas and Fouvry [14] and for Bhar-
gava and the author [29] to count Galois sextic S3 extensions.

Now we briefly outline the approach of Davenport-Heilbronn. We give a
parametrization originally due to Delone and Faddeev [46] (and refined by Gan,
Gross, and Savin [56]), that is a cleaner version of what Davenport and Heilbronn
used.

Let Ok be the ring of integers in a cubic number field.

Exercise 1.2.15. Show that 1 generates a direct summand of Ok as a Z-module.

Let 1, W, T be a Z basis of Ok. Since
WT =q+1W +5T,
for some q,7,s € Z, we can take w =W —sand 6 = T—r and have 1,w,0 a Z

basis of R with w0 € Z. We call such a basis a normalized basis. Next, we write
down a multiplication table for a normalized basis:

wd=n
(1.2.16) w? =m—bw+abd
0% = ¢ —dw + ¢,
where n,m,{,a,b,c,d € Z. However, not all values of n,m,{,a,b,c,d are possi-
ble.
Exercise 1.2.17. Show that the associativity of multiplication in Oy exactly corresponds
to the equations
(1.2.18) n=—ad m=-ac {=-bd.
We package these a,b, ¢, d into a binary cubic form ax® + bx?y + cxy? + dy?.
Exercise 1.2.19. Find a binary cubic form associated to Z.[v/2] and some normalized basis.

Find another one (using a different choice of normalized basis). What is the discriminant
of the binary cubic forms you found? What is the discriminant of Z,[/2]?
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A choice of normalized basis of Ok is equivalent to a choice of Z basis of the
Z-module Ok /Z. The action of GLy(Z) on bases of Ok /Z gives a GL(Z) action
on the tuples (a,b,c,d) € AS arising above, such that the orbits are in bijection
with isomorphism classes of Ok. The action is (almost) the 4 dimensional repre-
sentation of GL;(Z) on binary cubic forms. Let f(x,y) = ax® + bx%y + exy? + dyd.
Let g € GLy(Z). Then we can let GL(Z) act on binary cubic forms via

(1.2.20) (9)0%Y) = G 0% ),

where (x,y)g is the multiplication of a row vector by a matrix on the right. This

action exactly translates into the action on the parameters (a,b,c,d) given by
action on the choice of basis of Ox/Z.

Exercise 1.2.21. Check that for g = (9}) the action on the set of (a, b, ¢, d) is as claimed.
Check it for g = (1) and g = (') as well, and conclude the action is as claimed for
all of GLp(2Z).

It turns out the discriminant of O is equal to the discriminant of the associated
binary cubic forms. (These are both polynomials in a, b, ¢, d and it is computation-
ally straightforward to check they are the same.) Thus it remains to understand
(1)which tuples (a,b,c, d) arise, and (2) to count their GLy(Z) orbits, asymptoti-
cally by discriminant. For (1), it turns out that this can be understood by some
relatively simply criteria (the form should be irreducible over Q, along with a
condition mod p? for every prime p). For (2), one can count orbits by counting
the (relevant) lattice points in a fundamental domain for the action, which can be
done with methods from the geometry of numbers.

See also [113, Section 11], and [22] for further exposition of this approach from
a modern point of view, as well as [62, p.12-18] for a series of exercises that
provides a do-it-yourself proof of Davenport-Heilbronn’s result.

Counting fields up to discriminant X is closely related to producing complete,
non-redundant lists or tables of such fields, sometimes called tabulating fields. See
[36, Section 9] for an exposition of algorithms for such tabulation. For general de-
gree, they are required to essentially consider polynomials or algebraic numbers,
which as we have seen above do not line up perfectly with fields, and thus require
considering and computing with many more polynomials than actually produce
unique fields. However, for cubic fields, this parametrization relating isomor-
phism classes of cubic fields to certain lattice points in a fundamental domain
also is the basis of Belabas’s [11] approach to tabulating cubic fields, which is far
more efficient than is available for general degree. It would be very interesting
to see if Bhargava’s parametrizations of quartic and quintic fields [15,17] could
be used to give an efficient approach to tabulating quartic and quintic fields (see
also [37] for other approaches for quartic fields).

Extensions of extensions The general approach to counting number fields which
are composite extensions by counting extensions of extensions has been used by
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many authors. Kliiners [68] was able to asymptotically count G extensions for
many G of the form Cy!H. Wang [109] and Masri, Thorne, Tsai, and Wang were
able to asymptotically count G extensions for G = S;, x A where n = 3,4, or 5
and A is an abelian group. There is forthcoming work of Alberts, Lemke Oliver,
Wang, and the author that counts composite extensions for many more G.

Cohen, Diaz y Diaz, and Oliver were able to count quartic fields K with
Gal(K/Q) ~ Dy fields by using the fact that these fields were all quadratic ex-
tensions of quadratic extensions, and we can enumerate quadratic extensions of
any field in a relatively concrete way. We outline such an approach here.

Exercise 1.2.22. Show that each quartic field K with Gal(K/Q) ~ Dy contains a unique
quadratic field as a subfield.

Exercise 1.2.23. Show that any quadratic extension K of a quadratic field has Gal(K/Q) =~
Dy, Z/4Z, or Z/2Z x Z/27Z.

We can use the class field theory approach, outlined above, to show the follow-
ing:
(1) For each quadratic field F, the number N s, (X) of quadratic extensions K
of F with Nmg g (Disc(K/F)) < X satisfies
NF,SZ(X) = CFX + O(X)/
for some cg > 0.
(2) There exists a number C such that for each quadratic field F, for all X

2/3
Ngs,(X) < CDZ°X.

Exercise 1.2.24. Use class field theory and the Tauberian theorem above to show state-
ment (1) above.

We can combine the two statements above, along with our knowledge of the
quadratic extensions of Q, to count quadratic extensions K of quadratic fields F.
Recall | Disc(K/Q)| = NmF/Q(DiSC(K/F))D%. If N(X) is the number of quadratic
extensions of quadratic fields (more precisely we count pairs (F, K), where F/Q
is an isomorphism class of quadratic fields, and K/F is an isomorphism class of
quadratic extensions), we have

X
[F:Ql=2 F

- E(8))
[F:Q]=2 F

Unfortunately, we cannot exchange the o(X) (and its implicit limit statement) with
an infinite sum in F. However, if we fix some Y, and only consider F with Dy <,
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then we have

X
Ny(X)= ) Nggs, (w)
[F:Ql=2 F

DY
C
=y <<D1;>X+O(X)>
[F:Q]=2 F
DY

Cr
[FQl=2 F
Dr<Y

Exercise 1.2.25. Using statements (1) and (2) above, show that }_(r.q1—» % converges.
F

This gives a lower bound

. N(X) CF
| — > —.
mn X2 2 D

[FQl=2 F

However, we also have

X
N <SNy(X)+ ) Nig, <D2>
[F:Q)=2 F

Dr>Y

Ny(X)+ Y cp*x.

[F:Q]=2
DF>Y

Exercise 1.2.26. Show } [r.qj—2 D;M 3 converges.

So we have

. N(X) CF —4/3
1 — < — CD ,
imsup T < ) ppt ) CDy
F.Q]=2 [F-Ql=2
DY Dr>Y

and taking the limit as Y — co we obtain
. N(X) CF
limsup —— < —.
Xaoop X Z D%
[F:Q]=2
DY

Combined with the lim inf statement above, we have

NXO= [ Y S X+ o).
[FQl=2 F

To obtain an asymptotic on Np,(X), we can use the fact that the asymptotics
for Z /47 and Z/2Z x Z/2Z quartic fields (which can be obtained by class field
theory) are of smaller order, i.e.

Nz/4z(X) + Nz 27 x7/22(X) = o(X).
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To be quite precise, we should account for how many times each Dy quartic
appears in N(X).

Exercise 1.2.27. Show that the map from pairs (F,K), where F is an isomorphism class
of quadratic field, and K/F is an isomorphism class of a quadratic extension of F such that
Gal(K/Q) =~ Dy, to isomorphism classes of Dy4-quartic extensions of Q is 2 —1.

1.3. Conjectures and more results For each transitive finite permutation group
G, Malle [80] defined integers ag,bg such that he conjectured that there was
some cg > 0 (not predicted) such that

(1.3.1) Ng(X) = cgX/ %6 (log X) 6.

Though the examples mentioned above all confirm cases of Malle’s conjecture,
Kliiners [66] found a counterexample in G = C3 ¢ Cy, for which there were more
extensions than conjectured. One still has “Weak Malle,” an earlier conjecture of
Malle [79] that there is a cg > 0, and for every € > 0 and C/G, ¢ such that for all X
we have

(1.3.2) cgX/96 KNG (X) < e X!/asTe,

Conjecture (1.3.2) has no known counterexamples and is generally expected to
be true. We expect that one could add the (logX)?G term to the lower bound
in (1.3.2) and the inequality still hold. Ttirkelli [103, Conjecture 6.7] has given a
revised definition of bg for which he conjectures (1.3.1) holds. See [113, Section
10] for further exposition of Malle’s conjecture, as well as the general heuristic
principle that implies the conjecture as well as related conjectures (called the
Malle-Bhargava Principle).

New approaches have asymptotically counted G-extensions for other G, includ-
ing work of Fouvry and Koymans [52] that counts nonic Heisenberg extensions,
work of Kliiners [65] for generalized quaternion groups G, and work of Koymans
and Pagano [71] that counts G extensions for many nilpotent G.

1.4. Variations and directions There are of course many variations one can put
on Question 1.1.11. We will not give a complete literature review but try to point
the reader to some recent papers from which they can learn about various direc-
tions. In the cases for which we know the answer, it is common that the answer
is also given when the fields counted have a restricted signature. It is common to
also be able to give asymptotics only counting fields satisfying local conditions at
some finite (or even infinite) set of primes [23,53,111]. See [113] for an introduc-
tion to counting with local conditions, including results and conjectures in this
direction.

When asymptotics are known, one can ask for improved error bounds [13,94]
or secondary terms. While Davenport and Heilbronn’s result on counting cubic
fields is a theorem, tables such as those produced by Belabas [11] show various
slow convergence to the known asymptotic. Supported by significant numerical
evidence from such tables, Roberts [92] was able to conjecture a precise secondary
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term for the counting of cubic fields (beyond the main term of Davenport and
Heilbronn). Taniguchi and Thorne [101] and Bhargava, Shankar, and Tsimerman
[22] independently proved Roberts conjectured secondary term. The best current
result is of Bhargava, Taniguchi, and Thorne [26] and gives

Ns, (X) X+ (:§3X5/6 + o(x2/3(10g X)299),

1
~3¢3)
where ¢ §3 is an explicitly given, non-zero constant.

Wang [108] proves the first secondary terms beyond cubic fields, in counting
S3 x A extensions, where A is an abelian odd order group. In general there are no
conjectures for secondary terms, and it would be a useful computational project
to make numerical computations tabulating fields that were strong enough to
suggest more secondary terms, true error terms, or speed of convergence for
counting G-extensions for other G. It is possible some such computations could
be done with pre-existing tables of fields, at least as a starting place.

When asymptotics are not known, one can ask for lower or upper bounds
[4,25,72], or to prove Weak Malle [4,69]. In light of recent progress on the upper
bound for degree d extensions [9,24,43,87], as well as for G-extensions [48], it is
very natural to ask if these ideas can be used to develop more efficient algorithm
for tabulating number fields of a fixed degree or Galois group. Such improved
algorithms could be very helpful to produce more exhaustive tables, and in partic-
ular to help with the questions of predicting secondary and error terms discussed
above.

It would be very interesting to develop a “sampling” algorithm that might be
able to numerically estimate N g (X) for some X large enough that we are not able
to produce tables listing all G-extensions up to absolute discriminant X. Current
tabulation algorithms consider various polynomials and some fraction of them
end up producing new fields for the table. Is there a way to do some compu-
tations with random polynomials that could provide good enough estimates for
use in predicting secondary or error terms?

One can replace Q with another number field Ky, or more generally a global
field [23,53,71,106,119]. One can count extensions L/K that also have a specified
Galois group over some subfield Ky of K [5,6]. One can also count extensions by
invariants other than the discriminant, such class the class field theory conductor
for abelian extensions [111] , Artin conductors [7], or more general invariants [93].

2. Distribution of class groups

2.1. Motivating Questions For a finite transitive permutation group G, one can

ask as we consider the number fields in Sg, what is the distribution of class

groups that arise? In particular for a finite abelian group A, we could ask what is
. [{KeSg|Clk ~A, Dy < XJ

2.1.1 1 ?

@L1) X500 Ng(X)
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More generally, for a set S of number fields, and a function f taking finite abelian
groups to real numbers, we ask what are the asymptotics of

ZDKK€<SX f(Clk)
(2.1.2) W?
Dy <X
Note that the denominator of these questions are the number field counting ques-
tions above (or similar).

Class groups, in some sense, provide the first example of the strategy of
parametrization mentioned above that Davenport and Heilbronn used to count
cubic fields. Gauss studied SL,(Z) orbits of integral binary cubic forms ax? +
bxy + cy? (with a,b,c € Z), working with Lagrange’s reduction theory that re-
lates orbits to triples (a, b, c) in a certain region of Z>. This allowed Gauss to, for
example, tabulate and enumerate those orbits. Remarkably, Gauss found a group
law on these orbits. Dedekind later realized that these orbits were related to class
group of quadratic fields (and we now recognize Gauss’s group law as the usual
group law on class groups). This relationship is what allows us to compute class
groups of quadratic fields much faster than class groups of higher degree fields.
See [83] and the extensive tables of class groups of quadratic fields available at
the LMFDB [77].

In tables of class group of quadratic fields, one can observe that the group
Z./9Z occurs much more often than the group Z/3Z x Z/3Z even though both
groups have order 9. Cohen and Lenstra [39] sought to explain this and other
patterns available in the empircal data on the class groups of quadratic fields, and
developed heuristics that gave conjectures for the distribution of class groups of
quadratic fields and real abelian fields.

Before we can describe some of Cohen and Lenstra’s conjectures, we have the
explain a bit more context on class groups. Almost any empirical or theoretical
study of class groups of quadratic fields will show you that those of real quadratic
fields behave quite differently than those of imaginary quadratic fields.

Exercise 2.1.3. Using a database such as the LMFDB, look at class groups of several
hundred real and imaginary quadratic fields. What is the major difference you notice?

This difference is already apparent in Gauss’s study, and Gauss conjectured
(in modern terms) (1)that there are only finitely many imaginary quadratic fields
with a given class group, and (2) that there are infinitely many real quadratic
fields with trivial class group. The conejcture (1) was proven by Heilbronn [61],
but (2) is still open.

Exercise 2.1.4. Recall the Brauer-Siegel theorem, and see why it implies (1) above. Why

doesn’t it give the same conclusion for real quadratic fields?

2.2. Genus theory of quadratic fields Secondly, Gauss found that the 2-torsion
in class groups of quadratic fields (in his binary forms language) was relatively
easy to describe.
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Theorem 2.2.1. If K is a quadratic field and Ny is its narrow class group, then Ny [2] ~
(Z/27)t1, where t is the number of ramified primes of K/Q.

When K/Q is imaginary quadratic, then N = Clk by definition.

Exercise 2.2.2. When K/Q is real quadratic, show that Ny — Cly is either an isomor-
phic or has kernel isomorphic to Z./27Z. (depending on whether the fundamental unit has
negative or positive norm). Conclude that Cly [2] ~ (Z/2Z) 1€, where € is either 1
or 0.

While Gauss proved Theorem 2.2.1 very explicitly with binary quadratic forms,
we will give a proof here using class field theory. This both gives good practice
using the statements of class field theory, but also puts this phenomenon in a
larger context. However, first we will not that one can see quite explicitly some
potential 2-torsion. If p is a prime ramified in a quadratic field K, where (p) = 02,
then p is either trivial or order 2 in Cly . There is no known simple way to produce
such possible p-torsion for any primes p > 2.

To understand Clg /2 Clk (which is abstractly isomorphic to Clk[2] by the the-
ory of finite abelian groups), we can then try to understand Sur(Clg,Z/2Z),
which via class field theory, corresponds to the set of everywhere unramified
quadratic extensions of K. Similarly to understand the narrow class group, we
need to understand quadratic extensions of K unramified at all finite places.

Exercise 2.2.3. Let K be a number field. For a real place v let X be the subgroup of
positive elements of K. Show that there is a unique continuous homomorphism

/[ [T osxTIxx ] ®5) =N«
v finite v real v complex
sending, for each finite place v of K, a uniformizer m, € K to the image of the corre-
sponding prime ideal of v in Ny, and that the homomorphism is an isomorphism. Show
this implies that Ny is isomorphic to the Galois group of the maximal abelian extension
of K unramified at all finite places.

Exercise 2.2.4. Let K be a number field. Show that there is a unique continuous homo-
morphism

/| TT osx TIxex JI x| —Ck
v finite v real v complex
sending, for each finite place v of K, a uniformizer m, € K3 to the image of the corre-
sponding prime ideal of v in N, and that the homomorphism is an isomorphism. Show
this implies that Cly is isomorphic to the Galois group of the maximal abelian extension
of K unramified at all places.

Exercise 2.2.5. If K/Q is quadratic, show that the action of the generator of Gal(K/Q)
on Ny is by multiplication by —1.
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Exercise 2.2.6. Show if K is a quadratic field and L/K is everywhere unramified, that
L/Q is Galois, and Gal(L/Q) ~ Z/27Z x Z/27Z. [Hint: this may require reviewing the
statements of class field theory to recall that, for K Galois, the map Gy — Gy given
by conjugating by o € Gq corresponds, via the Artin map, to the natural action of o,
through Gal(K/Q), on Cx. ]

Proof of Theorem 2.2.1. Let N = Nx. We have, from the theory of finite abelian
groups that [N/2N| = |Hom(N,Z/2Z). If we consider the homomorphisms N —
Z./27Z, there is one trivial homomorphism, and the rest correspond, via the class
field theory above, exactly to the unramified at finite places quadratic extensions
L of K. We have seen that each such L is a Galois Z/2Z x Z./2Z. extension of Q.

So now we can ask, what are the Z/2Z x Z /27 extensions L of Q containing K?
By Galois theory, these correspond to normal subgroups S of G, contained in Gk
and with quotient isomorphic to Z/2Z x Z/27Z. Then these almost correspond
to surjections Gq — Z/27Z. x Z./2Z, whose projection onto the second coordinate
gives the map Gq/Gk ~ Z/2Z, except two surjections with the same kernel
correspond to the same field. So two surjections correspond to the same field if
and only if they differ by an automorphism of Z/2Z x Z /27, and since we have
fixed the projection onto the second coordinate, it must be an automorphism that
preserves that projection. There are two such automorphisms, so each field L
corresponds to two surjections Gg — Z/2Z x Z./2Z whose projection onto the
second coordinate gives the map Gq/Gx ~ Z/27Z.

Given L/Q Galois with Galois group Z/2Z x Z/2Z and K the fixed field of
((1,0)) (as arranged above), we have L/K is unramified at all finite places if and
only if the inertia groups of all finite places in Gal(L/Q) = Z/2Z x Z/2Z have
trivial intersection with ((1,0)). The only subgroups of Z/2Z x Z/2Z with this
property are the trivial subgroup, ((1,1)), and ((0,1)). If a finite place v of Q is
unramified in K, then it follows that for L/K unramified at all finite places we
must have the inertia group of v in Z/2Z x Z /27 trivial.

From the above exercise, we have that

H Ot x R* ~ CQ ’
v finite of Q
and so a continuous surjection Cq — Z/2Z x Z/2Z unramified outside of a set S
of places of Q (those ramified in K) corresponds exactly to a continuous surjection
o:[Jos —2z/2z xz/22.
veS
In K, we are given, for each v € S, a continuous surjection 0, — Z/2Z, and
we see that to construct a ¢ corresponding to L as above we may lift this map
to O — ((1,1)) or OF — ((0,1)). If we lift all of the maps from O to the
same subgroup, then ¢ won’t be surjective, but otherwise it will be surjective.
Any such surjective ¢ gives an L/K quadratic and unramified at finite places,
and any L/K quadratic and unramified at finite places comes from two such
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IS|—
surjective ¢. Thus we have that the number of L is % = 2811 1, and thus
IN/2N| = |Hom(N,Z/2Z) = 21, as desired. O

So from the point of view of class field theory, these unramified abelian exten-
sions L/K are “predictable” because they come from abelian extensions of Q. We
might wonder if there are are other such unramified abelian extensions that we
can produce from abelian extensions of Q.

Exercise 2.2.7. Let K be a quadratic extension. Let E/Q be the maximal abelian extension
of Q such that EK/K is unramified. So EK/K is an unramified abelian extension. Show
that it corresponds to 2 Cly via class field theory (and Galois theory). So Clk /2 Clk is
the part of Cly that abelian extensions of Q tell us about. Show the analogous statement
for “unramified at finite places” and the narrow class group.

This gives us a precise sense in which Clk /2 Clk is well-understood that prov-
ably does not apply to the rest of Clk. In any case, as there is this “predictable”
piece of the class group Clk of a quadratic field in the 2-Sylow subgroup, Cohen
and Lenstra, in their heuristics for the distribution of class groups, only consid-

ered the odd part C13%¢ (the quotient of Cly by its 2-Sylow subgroup).

2.3. The Cohen-Lenstra heuristics For simplicity, we will fix an odd p, and only
consider Clk p,, the Sylow p-subgroup of Clk. Let I1Q,RQ be the sets of isomor-
phism classes of imaginary and real quadratic fields, respectively. Cohen and
Lenstra’s heuristics imply that for any “reasonable” ? function f from the set of
isomorphism classes of finite abelian p-groups to R, that

(A
> ke1Q f(Clk) X Afin. ab. m
(23.1) lim —2KSX — _Poerowp
- X—o0 Y kelo 1 i TAGAT]
5% T
and
FA
ZKGRQ f(Clk) 3 Afin. ab. Wut%A)l
(2.3.2) lim —2KkSX — __peroup
SR TLgT Dy e

Note the denominators in (2.3.1) and (2.3.2) do not depend on f. They are simply
some constant coming from the theory of finite abelian p-groups. Indeed, we

have
1 . 1 .
Y o la-p T ad Y o —Ja-p
Afin. ab. |AUt(A)| i>1 Afin. ab. ‘AH Aut(A)' i>2
p-group p-group

If we take f to be the characteristic function of a particular group, we see that the
conjectures imply a particular p-group appears with a frequency inversely propor-
tional to | Aut(A)| in the imaginary case and inversely proportional to |Al| Aut(A)

2No particular definition of reasonable is given, but see [21, Section 5.6] and [10, Section 7].
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in the real case. So in particular, this conjecture explains, in a precise way, the dif-
ferent frequencies with which different groups were empirically appearing in the
tables. See [113, Section 5] and [110] for further exposition on these conjectures.

Exercise 2.3.3. How often do the conjectures above predict that imaginary, respectively
real, quadratic fields have cyclic Sylow p-subgroup?

The heuristics of Cohen and Lenstra greatly benefited from the existence of
tables of class groups of quadratic fields that could be used as evidence for the
precise conjectures being made.

Exercise 2.3.4. Using existing databases, make some tables of the frequency of 3-Sylow
subgroups in class groups of imaginary (and/or real) quadratic fields up to some large
discriminant. How do they compare to the conjectured values?

There are no general conjectures about how quickly the limits in (2.3.1) and
(2.3.2) approach their conjectured values. One could imagine conjectural sec-
ondary terms as well as conjectural error terms. Using the same approach as
for counting cubic fields, we have secondary terms in one case [22,26,101] (we
will discuss further below why the “same approach” applies). Not only would
such a conjecture be interesting in its own right, but also if believable (say, based
on evidence is certain cases and general heuristic reasoning), it might help us
evaluate in other cases whether given data on class groups gives good evidence
for a particular conjecture.

Project 2.3.5. Using existing databases, make some graphs of how the proportion of
imaginary (and/or) real quadratic fields of absolute discriminant in (X, 2X] with a given
class group changes with X. Do any of your graphs (or the underlying numbers) suggest
a rate at which the limit is approached? Do they suggest precise secondary terms?

Note that in the above exercise if you can uniformly randomly select a sample
of fields in each range, you can ensure you get values close to the actual propor-
tions via probability (e.g. Chebyshev’s inequality). For quadratic fields, since you
are likely getting class groups from a table as opposed to computing them, this
doesn’t seem worthwhile. However, if you are in a setting where you have to
compute each class group, then sampling will vastly increase how large of an X
you may consider.

Based on computations of the sort suggested in Project 2.3.5, Lewis and Williams
conjecture approximate secondary terms for the proportion of real quadratic
fields having class group with non-trivial Sylow p-subgroup. It would be in-
teresting for these conjectures to be made more precise as in [92] and also to have
conjectural secondary terms in other cases. Such conjectures, or a more general
theory of how large we expect secondary or true error terms to be, can be very
important in understanding if numerical data is supporting a conjecture, contra-
dicting a conjecture, or not powerful enough to do either.
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Two important motivations for Cohen-Lenstra heuristics originally were the
agreement with tables and the general philosophy that objects occur in nature
with frequency inversely proportional to the size of their automorphism group.
See, e.g. Exercise 1.1.13 as well as the following exercise for some examples of
this ubiquitous phenomenon.

Exercise 2.3.6. Consider all multiplication tables on n elements, ie. functions
{1,...,n}x{1,...,n} = {1,...,n} that are associative and have inverses and an identity.
Show that a finite group G or order n is isomorphic to n!/| Aut(G)| of the groups given
by these tables.

3. A matrix model for class groups

3.1. The model Venkatesh and Ellenberg [106, Section 4.1] introduced an inter-
esting perspective on class groups of quadratic fields as follows. Let K be a
quadratic field and let S be a set of primes of K that generate Clx. We write OF
for the S-units in the integers Oy, and I}, for the abelian group of fractional ideals
generated by the elements of S. Let pg be the group of roots of unity in K. Then
(3.1.1) CI(K) = cok(0%/pk — IR),

where the map takes « to the ideal ().

Exercise 3.1.2. If A is a finite abelian group given as cok(U — V) for U,V finitely
generated abelian groups, then the Sylow p-subgroup Ay is cok(U® Zp — V ® Zp).

So
Cl(K)p = cok(0%/uk @ Zp — I ® Zyp).

We have that I} is a free abelian group of rank S|, so I§ ® Z,, ~ les |, Dirichlet’s
unit theorem gives that 05 /uk is a free abelian group of rank |S[ 4 u, where
U = 0 if K is imaginary and u = 1 if K is quadratic. So 05/ux ® Zp ~ ZEHLL.
If we choose bases for Iﬁ and O%/ux as Z-modules (which would give specific
isomorphisms as above), then the map 0% /ux ® Z, — Ii ® Zy, can be written as
a matrix M € Mats||s|4+u(Zp). (Though M has integral entries, since we are
interested in Cly ,, we take the cokernel as a Z-matrix.)

Exercise 3.1.3. If A is a finite abelian p-group, the isomorphism type of A can be deter-
mined from A @ Z/pZ,A @ Z/p*Z,ARZ/p°Z,....

It is then natural to consider the distribution of Clx ®Z/p*Z.

Exercise 3.1.4. Let N € Matyxm(Zy) and let N € Maty xm(Z/pZ) be obtained
from N by reducing each coefficient mod p*. Show

k(N : ZJ' — Z}) ® Z/p*Z ~ cok(N : (Z/p*Z)™ — (Z/p*Z)™).
So if we let M be the reduction of M mod pk, we are interested in the dis-

tribution of the cokernels of these M € Mat|s‘x|s‘+u(Z/ka), where u is ei-
ther 0 or 1. Now a priori we have no idea what the distribution of these M is,
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but a baseline heuristic might be to guess they are approximately uniform in
Matnxniw(Z/p*Z). Putting this together over different k, one might guess that
the M are approximately distributed according to Haar measure on Maty xn 4w (Zyp).
This doesn’t make perfect sense, because the n involved is not fixed, but as a
heuristic we just imagine that n is large.

In any case, this leads to a natural question. What is the distribution of the
cokernel of a random matrix from Matn xn 1w (Zp) taken with respect to Haar
measure? Friedman and Washington [55] answered this question in the case
u = 0. They were also motivated by the Cohen-Lenstra heuristics, but particularly
the analog in which Q is replaced by IF(t), in which one can write the class group
as a cokernel of a different matrix involving the Frobenius.

Let N be a random matrix from Matn xn4u(Zp) taken with respect to Haar
measure. We wish to determine Prob(cok(N) >~ A) for each finite abelian p-group
A, and we will follow the approach of [75] which does the analog for non-abelian
profinite groups.

Exercise 3.1.5. Show that if u > 0, then Prob(cok(N) finite) = 1.

Note that Prob(cok(N) ~ A) = | Aut(A)|"'E(#Isom(cok(N),A)). (We use E
to denote the expectation, or average, of a random real number.) Since cokN =
Z3/N (Z{,‘*u), any isomorphism cok(N) — A gives a distinct surjection of Z,-
modules Z{,‘ — A. So we consider a surjection F: Zg — A, and ask, what is the
probability that F descends to an isomorphism cok(N) — A? First, each column
of N has to land in ker(F), and since each column is chosen independently from
Haar measure on Zy, this happens with probability [Z} : ker ™" =A™
The Haar measure on Zj restricted to kerF is the Haar measure on kerF. So
the probability that F descends to an isomorphism cok(N) — A, conditioned
on FN = 0 (i.e. each column of N is in kerF), is the probability that n+u
independent elements from kerF ~ Z7 taken from Haar measure generate Z7.
By Nakayma’s lemma, this generation is equivalent to generation mod p, where
the Haar measure becomes the uniform measure.

Exercise 3.1.6. Show that the probability that n 4w uniform random elements of (Z /pZ)™
generate the group is

n+u

IT a-»b.

i=u+1

Exercise 3.1.7. If A is a finite abelian p-group of rank v (i.e. AR Z/pZ ~ (Z/pZ)"),

show
mn

#surz, (Zy,A) =AM [ (1-p79

i=n—r+1

(where Surz,, denotes Zp-module surjections).
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We conclude, that for A a finite abelian group, we have
(3.1.8)

Prob(cok(N) ~ A) =| Aut(A)| " 'E(#Isom(cok(N), A))

n+u
= Aut(A)| " Surz, (Z5, AA T T (1-p7)
i=u+1
n n+u
=l Aut(A)HAN [T a—p AT T (1-p7)
i=n—r+1 i=u+1
n+u n
=l Aut(A) A [T a-pH [ @-p7H.
i=u+l i=n—r+1

We are interested in this value for a fixed A (and hence 1), when n is large. So it
is interesting to note that the above probabilities approach a limit as n — oo, and
in particular approach
|Aut(A)HAIT T a—p D,
izu+l
which are precisely the probabilities prediction by the Cohen-Lenstra heuristics
for class groups of imaginary and real quadratic fields.

Exercise 3.1.9. Find a formula for | Aut(G)| when G is an abelian p-group. [Hint: it
is useful to choose Ay > Ay > --- to denote the isomorphism type of the group, where
P IG/piG ~ (Z/pZ)N:. As in the proof above, first count homomorphisms, and then
restrict to counting those that are surjective.]

3.2. Class group matrices From the above analysis, it is tempting to make a con-
jecture about the distribution of the matrices M described in the last section as
K varies over quadratic fields. In particular one imagines a conjecture that the
M are approximately or asymptotically distributed with respect to Haar measure
on p-adic matrices which would imply the Cohen-Lenstra conjecture for the dis-
tribution of class groups. There are several subtleties. One needs, for each K, to
pick a set S of primes. One could take, for example, all primes of K up to norm B,
where B is the Minkowski bound so that S necessarily generates Clx. One needs
to pick bases for I° and 0%/uk. Of course, there is a natural basis for IS given by
the elements of S.

Question 3.2.1. Is there a “natural” basis of OS?

Then, one needs an equidistribution conjecture for elements in groups, where
the groups themselves are changing (since |S| will not be constant). Friedman and
Washington [55, Section 2] suggest one way to do this.

Preliminary computations however, using choices as suggested above, with a
basis of 0§ given by the output of computer algebra computations of 0%, suggest
these matrices are quite far from equidistributed for Haar measure.
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Project 3.2.2. Do such computations and see what the distribution of matrices arising
looks like. Do they look like they are coming from Haar measure? Try other choices of
setup e.g. fixing an n and then taking all X such that known bounds guarantee that the
first n primes of K are sufficient to generate the class group, so one has many matrices of
the same dimension.

3.3. Universality If the actual matrices defining Sylow p-subgroups of class groups
as above are not distributed as in they are coming from Haar measure, does that
mean that the Cohen-Lenstra conjectures are wrong? The answer is very much
no. In fact, there is a universality phenomenon that says a very wide range of
distributions of random matrices, asymptotically as the size of the matrices goes
to infinity, have cokernel distribution approach the Cohen-Lenstra distribution.
This universality is in the sense of the Central Limit Theorem.

Theorem 3.3.1 (Central Limit Theorem). Let X1, Xy, ... be independent, identically

distributed random real numbers with finite mean w = E(X;) and finite variance o2,

Then as n — oo,
Xy 44X
\/ﬂ<1+n+ “—u)

converge in distribution to the normal distribution with mean 0 and variance 2.

The universality aspect of the Central Limit Theorem is that X; can have almost
any distribution. That includes the case when the X; are normal, which is a highly
symmetric distribution that we think of as analogous to Haar measure. However,
the Central Limit Theorem also applies for X; that are quite irregular. No matter
what X; you put in, the asymptotic output of this weighted averaging process is
a normal distribution.

There is a morally similar result of the author for cokernels of random matrices.

Theorem 3.3.2 ([117, Theorem 1.3]). Let p be a prime, u be a non-negative integer
and € > 0 be a real number. For each positive integer n, let M(n) be a random matrix
valued in Matn xn 1 (Zyp) with independent entries. Further, for any entry M(n)y ; of
any M(n) and any v € Z/pZ, we require that

(3.3.3) PM(n)y; =7 (modp)) <1-—e.

Then for any finite abelian p-group A,

. [15%,0—-pY)
(3.3.4) nlgnoo]P(Cok(i\/l(n)) ~A)= m

Theorem 3.3.2 allows great flexibility in the random matrices, in particular the
matrix entries do not have to be identically distributed. The matrix entries are
certainly not required to take every value mod p (and hence are not required to
take every value mod p¥), but have a much weaker requirement that they not be
entirely concentrated on one value mod p. It is easy to see some such condition
is required, as the all 0’s matrix is technically a random matrix with independent
entries. The given hypothesis (3.3.3) can certainly be weakened, see [86, Theorem
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4.1]). The independence of the entries is indeed a strong requirement, and some-
thing along those lines is of course necessary, but one could imagine weakening
the hypothesis to some kind of asymptotic or approximate independence. See
also [118, Section 3] for further exposition of this kind of universality phenome-
non.

Project 3.3.5. Based on computations from (3.2.2), make an empirically supported con-
jecture about the distribution of the matrices M from imaginary and/or real quadratic
fields. Can the methods of [117] be extended to show that prove matrices from with a
distribution as conjectured satisfy (3.3.4)?

4. Moments of class group distributions

So far, the main function f we have been considering averaging in (2.1.2) (i.e.
over class groups of number fields) has been the characteristic function of having
a specified Sylow p-subgroup.

4.1. Definition of moments of a random finite abelian group In fact, there is
another class of important f, which are indexed by finite abelian groups B, where

fg(X) := #Sur(X, B).

Let
ZDK€<SX f(Clk)
E(f,S) = lim K>
( ) X—00 Z Kes 1
Dr<X

be the empirical average of f over a family S of number fields, assuming the
limit exists. (Showing that such a limit exists is quite difficult, and indeed is only
known in the few cases where we know what the limit is.)

Exercise 4.1.1. If B is a finite abelian group, show that the values of E(#Sur(—, B’),S)
over subgroups B’ of B determine the value of E(#Hom(—, B), S), and that the values of
E(#Hom(—, B’),S) over subgroups B’ of B determine the value of E(#Sur(—, B),S).

Exercise 4.1.2. If X is a finite abelian group of exponent p, show that # Hom(X, (Z/pZ)*) =
IX[<.

This is reminiscent of certain functions fy(X) = X¥, whose averages are im-
portant statistics of distributions of real numbers. If X is a random number, then
E(X*) is called the k-th moment of X or the distribution of X. These moments are
often more accessible than direct information about a distribution. Yet wonder-
fully, knowledge of all of the moments often determines a distribution uniquely.
For example, we have the following classical theorem on the moment problem.

Theorem 4.1.3 (Carleman’s condition). Let X be a random real number such that
My = E(XX) is finite for all integers k > 0. Then if

_ 1
(4.1.4) > My =0,
k>1
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then there is a unique distribution for a random real number Y such that E(Y¥) = My
forall k > 0.

Exercise 4.1.5. Can you apply Theorem 4.1.3 for My, = e*? What about My, = k7

The averages of #Sur(—, B) are important enough that they are called the mo-
ments of a distribution of finite abelian groups. The moments are indexed by
finite abelian groups. If X is a random finite abelian group, then the average
[E(#Sur(X,B)) is the B-moment of X, or of the distribution of X. As in Exer-
cise 4.1.2, if we reduce a finite abelian group to a certain list of integer invariants,
then the averages of # Hom(—, B) are precisely the mixed moments of those inte-
ger invariants (in the classical sense of mixed moments) [35, Section 3.3]. Exer-
cise 4.1.1 shows that as far as knowledge of the moments of a random variable
(or even the limit of moments of a sequence of random variables) is concerned, it
doesn’t matter if we count homomorphisms or surjective homomorphisms. This
is analogous to the relationship between the moments [E(X¥) and the factorial
moments E(X(X—1)---(X—k+1)) of a random number. One uses one version
of the moments as opposed to the other generally when they make the computa-
tions and formulas simpler.

One important feature of these moments of finite abelian groups is that they
determine a distribution uniquely (when they are not too large), analogously to
Theorem 4.1.3.

Theorem 4.1.6 ([118, Corollary 2.6]). Let M o € R for each finite abelian group A such
that there is a constant C such that Ma < C|AZ A] for every A. Let X,Y be random
finite abelian groups, If for every finite abelian group A, we have

E(#Sur(X,A)) = E(#Sur(Y,A)) = Ma,
then X and Y have the same distribution, i.e. for every finite abelian group B,
Prob(X ~ B) = Prob(Y ~ B).

For our questions of distribution of class groups, we are never considering a
single random group, but rather a sequence of random groups (indexed by X,
where for each X we take a uniform random field with Dk < X). The averages
E(f,S) we consider are limits of averages. So we naturally ask when the limit
moments of a sequence of random variables implies the sequence has a given
limit distribution. This works well for finite abelian p-groups, but breaks down
when we consider all finite abelian groups, at least for the most naive sense of
limit distribution.

Theorem 4.1.7 (see [114, Thm 8.3, proof of Cor 9.2]). Let p be prime, and let A be the
set of finite abelian p-groups. Let Mo € R for each A € A such that there is a constant
C such that M < C| A2 Alforall A € A. Let Y, X1,Xp,... be random groups in A. If
for every A € A, we have

lim E(#Sur(Xy,A)) = E(#Sur(Y,A)) = Ma,

n—oo
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then for every B € A,
lim Prob(X; ~ B) = Prob(Y ~ B).

n—oo
As in [110, Example 6.14], we can consider a random finite abelian group X,
e.g. such that
2)'eB3) o)
|A||Aut A|
(There is a random group with this distribution—see e.g. [115, Proposition 2.1].)

Prob(X ~ A) =

Then consider the random groups X, := X x Z/pZ. for each prime p.

Exercise 4.1.8. For any finite abelian group A, show that
lim E(#Sur(X x Z/pZ,A)) = E(#Sur(X, A)).
p—oo
What is limy o0 Prob(Xn ~ A)?

While Theorem 4.1.6 shows that on finite abelian p-groups, limit moments
contain enough information to determine a limit distribution, the converse is
false.

Exercise 4.1.9. Construct a sequence Y, X1, X, ... of random finite abelian p-groups
such that for every finite abelian p-group B we have

lim Prob(X,, ~ B) = Prob(Y ~ B).

n—oo

but yet for some finite abelian p-group A we have
lim [E(#Sur(Xy,,A)) ZE#Sur(Y,A)).
n—o0

Show that you can do this for any Y with finite moments. Show that you can have the
limit limy, o IE(#Sur(Xy, A)) not exist.

So, when we are taking limits of distributions of finite abelian p-groups, we see
that these limiting moments are even stronger information than the limiting dis-
tributions. See [118, Section 2] and [114, Sections 1.5, 8] for further exposition on
the moment problem for random groups and its applications to number theory.

Project 4.1.10. Similar to Project 2.3.5, using existing databases, make some graphs of
how various moments of the class groups of imaginary (and/or) real quadratic fields of
absolute discriminant converge to the predicted values. (See [81] and [116, Appendix]
for some such computations.) Do any of your graphs (or the underlying numbers) suggest
a rate at which the limit is approached? Do they suggest precise secondary terms?

The importance of having conjectures for the rate of convergence or secondary
terms has been discussed above for the average proportion of class groups having
a fixed Sylow p-subgroup. In the case of moments, it is perhaps even more
important, because convergence to moments is a more desirable target to check
given that, as we will see below, the conjectural moment values are generally nice
rational numbers (as opposed to the conjectural proportion values).
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4.2, Relationship of moments to field counting What about the aspect of mo-
ments that they are supposed to be easier to access? This turns out to also be
the case for distributions of class groups. The only non-trivial f for which the
averages (2.3.1) or (2.3.2) predicted by the Cohen-Lenstra heuristics for quadratic
fields is known is #Sur(—,Z/3Z). These averages are results of Davenport and
Heilbronn [45], and predate the Cohen-Lenstra Heuristics. They turn out to be
closely related to counting cubic fields. (See also [67] and [113, Section 3] for
more discussion on the relationship between counting number fields and the
Cohen-Lenstra heuristics, and [90] for a discussion of the relationship between
both these questions and conjectures on upper bounds on class groups.)

Let A be an odd finite abelian group, and let A x_; Z/2Z be the semi-direct
product where Z/27Z acts on A by multiplication by —1.

Exercise 4.2.1. Let K be a quadratic field and L/X and unramified abelian extension with
Gal(L/K) =~ A. Show that L/Q is Galois and Gal(L/K) ~ A x_1 Z/2Z. (Don't forget
that when |A| is even there can be more than one group extension of Z./2Z by A where
the associated action is by —1.)

Exercise 4.2.2. Let A be an odd order finite abelian group. Let L/Q be Galois with Galois
group A x_1 Z/2Z. Show that L contains a unique quadratic field Ky .

Thus, for an odd order abelian group A, we have a correspondence between
pairs (K,L) where K is an isomorphism class of quadratic fields and L/K is an
isomorphism class of unramified abelian extensions of K with Galois group A
and isomorphism classes of L/Q Galois with Galois group A x_q Z/2Z such that
L is unramified over its unique quadratic subfield.

Exercise 4.2.3. Show that this correspondence is 2 — 1. (See Exercise 1.2.27.)

Given K, isomorphism classes L/K of unramified abelian extensions of K with
Galois group A correspond to Aut(A) orbits of surjections Sur(Clk, A), via class
field theory. Thus Sur(Clk,A) has a natural meaning in terms of unramified
extensions, which gives another motivation for the definition of moments above-
we are averaging a count that is algebraically meaningful.

Let S be a set of quadratic fields K and A a finite abelian group A. Let T be
the set of isomorphism classes of Galois A x_1 Z/2Z extensions, unramified over
their quadratic subfields, such that their quadratic subfield is in S. Then

Y #Sur(Clg, A) = 2| Aut(A)#T.

KeS
Thus the moments of class group distributions are closely related the the num-
ber field counting questions in the first section, for groups G = A x_1 Z/2Z in
their regular representation. The main difference is that we restrict ramification
behavior (and since in class group questions we usually fix the signature of the
quadratic field, this would also require an additional restriction on the counted
G fields at infinity).
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We can slightly shift the problem, by recognizing that since Z/2Z is a sub-
group of A x_1 Z/27Z, that a Galois A x_1 Z/2Z extension L/Q also has a sub-
field F such that L/F is quadratic.

Exercise 4.2.4. In the above situation, show that ¥/Q is not Galois, and that L is its
Galois closure. In fact, there are many such subfields F, but show they are all isomorphic.

Exercise 4.2.5. In the above situation, find the Galois group Gal(F/Q), as a permutation
group.

Exercise 4.2.6. In the above situation, show that the absolute discriminants have the
property Dy = D]Qi\‘fl)/z. (Hint: it may be useful to use the fact that for a Galois
extension L/Q with subgroup H, the discriminant Disc L™ of the fixed field is the Artin

conductor of the permutation representation of G on H cosets [85, VII:11.8].)

Thus one could also count F/Q with the Galois group above, with sufficient
conditions on ramification and at infinity to ensure that the corresponding L and
Ky are as desired. When A = Z/3Z, the corresponding F are precisely non-Galois
cubic extensions such that no prime of Q ramifies completely in F.

Exercise 4.2.7. Show that in the case A = Z/3Z, for a non-Galois cubic field F to have
the corresponding L/Ky unramified, it is necessary and sufficient that no prime of Q
ramifies completely in F.

The approach of Davenport and Heilbronn [45] was sufficiently flexible to im-
pose this ramification condition on cubic fields (it turns out to be a condition on
the associated binary cubic form mod p? for each prime p, which is already the
sort of condition they had to face to consider which forms actually corresponded
to fields).

Theorem 4.2.8 ([45, Theorem 3]). We have

> ke1qQ #Sur(Cly, Z/3Z))
Dy<X

429 lim =1
( ) X—00 Z KelQ 1
Dy <X
and
deli?( #Sur(ClK,Z/BZ) 1
4.2.10 lim K= ==,
( ) X—00 2 KerQ 1 3
Dy <X
Given the Cohen-Lenstra conjectures (2.3.1) and (2.3.2), this begs the question
whether
(4.2.11)
#Sur(A,Z/37Z) s #Sur(A,Z/37Z) s
_ 1-37Y) =1 d _ 1-37Y) =
2 lauay 03t ad ) SRy 113
Afin. ab. i>1 Afin. ab. i>2
3-group 3-group

These two equalities are indeed true (recall the the work of Davenport and
Heilbronn predated the work of Cohen and Lenstra). In fact, more generally we

L
3
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have for a prime p and finite abelian p-group B

#Sur(A, B) i #Sur(A, B) ; 1
2 Taway LI0-p=1and ) ] H LA
Afin. ab. i>1 Afin

p-group > group

and the Cohen-Lenstra heuristics predict the corresponding averages for the class
groups of imaginary and real quadratic fields, respectively. Since we know all
finite abelian p-groups, we can express the left-hand sides above as a formal
expression in p. Cohen and Lenstra developed a generating function machinery
that allows one to compute such group theoretic averages (see [39, Section 9
(C6),(C9)] and [117, Lemma 3.2]). However, perhaps the most direct path to the
computations above is to consider the random matrix models of Section 3.

Exercise 4.2.12. Let N be a random matrix from Matn xniw(Zp) (for uw > 0) taken
with respect to Haar measure. For a finite abelian p-group B, find E(# Sur(cok(N), B)
and show

lim IE(#Sur(cok(N),B) =|B|™"

n—oo
[Hint: this is an easier version of the computation of E(#Isom(cok(N), B) we did in
Section 3.]

Thus we have
(4.2.13) lim »  Prob(cok(N) ~ A)#Sur(A,B) =B

n—o0
A fin. ab.

p-group

Since we know
[lizui(l=p")

(4.2.14) lim Prob(cok(N) ~ A) =
n—oo

A% AutA] 7
if we can exchange the limit in n with the sum over A, we would conclude
#Sur(A, B)
4.2.15 o 1— B
(42.15) D TAwauta 11 @-p =B
A fin. ab. izu+1
p-group

While such an exchange is not always possible, here it can be justified. From
(3.1.8), we have

(4.2.16)

n
Brobleok(N) = A)ysur(A, B) = [AutA) YA [] (1—p~#Sur(A,B).
imut1(I—=p7) i=n—r+1

Observe that the expression on the right is increasing in n. Thus by the monotone
convergence theorem, we have

Prob(cok(N) ~ A
y Dbl = A ysur(a,B) = Y lim Tonlc
Afinab, 1 imui (=97 Adimap e Tlizu (=P
p—group p—group

nh_r)nm Prob(cok(N) ~ A)) #Sur(A, B).
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Since []1 % ;(1—p~*) doesn’t depend on A, it (along with its limit) can pull out

of the sum and we have
lim »  Prob(cok(N)~ A)#Sur(A,B)= »  lim Prob(cok(N) ~ A)#Sur(A,B),

n—oo n—oo
A fin. ab. A fin. ab.
p-group p-group
which, with (4.2.13) and (4.2.14), implies (4.2.15).
Theorem 4.1.7 then implies that Cohen and Lenstra’s conjectural distribution
for Sylow p-subgroups of class groups of imaginary, respectively real, quadratic
fields is the unique distribution on finite abelian p-groups with moments all 1,

respectively with B-moment [B| .

Exercise 4.2.17. Using genus theory (and some results from analytic number theory of
the integers that you might have to look up), show that

> _kerQ #Sur(Clg, Z/27) >_kerQ #Sur(Clg, Z/27)
lim —D2KsX — lim —PxsX =00
X—00 ZKGRQ 1 X—=00 ZKGRQ 1
Dr<X Dr<X

This shows another, quantitative, way in which the 2-Sylow subgroups of class
groups of quadratic fields behave differently than the (conjectural) behavior of
the odd part of the class groups.

5. Cohen-Lenstra-Martinet heuristics

What about the distribution of class groups of number fields of higher degree
than 2? Cohen and Lenstra [39] actually gave conjectures on class groups dis-
tributions for totally real G-extensions for any abelian group G, and Cohen and
Martinet [40] gave conjectures on class groups distributions for G-extensions for
any transitive permutation group G and any signature. See also [110] for an
exposition of these conjectures as well as more direct, equivalent forms of the
conjectures.

5.1. Class groups of Galois extensions Let G be a finite simply transitive per-
mutation group, so in particular G-extensions are Galois over Q. We will consider
class groups of G-extensions that come with an isomorphism Gal(K/Q) ~ G, and
call these pairs of a field and an isomorphism G-Extensions. If K is a G-Extension,
then Cly is a G-module (i.e. a module for the group ring Z[G]). Note that for Clg
to be a G-module, and not just a Gal(K/Q)-module, we do require the data of the
isomorphism Gal(K/Q) ~ G.

The conjectural probabilities in (2.3.1) and (2.3.2) involve | Aut(A)|. Part of the
philosophy of Cohen-Lenstra-Martinet is what we should always consider objects
with all available structure. After all, we consider the automorphisms of A as
a group, not a set. So the probabilities for class groups of G-Extensions should
involve | Autg (A)|, the number of automorphisms of A as a G-module.

Which finite G-modules can arise?
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Exercise 5.1.1. Show that N := deG G acts as zero on Cly, i.e. NClg = 0.
So we let R = Z[G]/NZ[G], and have that Clk is a finite R-module.

Exercise 5.1.2. For G = Z/3Z, find an example of finite abelian group that can’t be the
class group of a G-extension, because it doesn’t have the structure of an R-module.

Exercise 5.1.3. For a finite R-module A, show that | Autg (A)| = | Autg(A)l|, where
Autg(A) is the group of automorphisms of A as an R-module.

What then is the analog of the |A|* factor? In the case of quadratic fields,
we saw that the actual value of this factor (i.e. the value of u), was different
in the different families of fields depending on their behavior at infinity. Fix a
subgroup Go, of G. Let Sg g, be the set of isomorphism classes of G-Extensions
of Q (where isomorphisms are given by isomorphisms of the field that respect
the identification of the Galois group with G) whose decomposition group at
infinity is conjugate to G (i.e. so that complex conjugation generates a subgroup
conjugate to Guo).

Exercise 5.1.4. Find the signature and the unit rank of a K € Sg g, -

Let p be a prime such that p { |G]. We will restrict to Sylow p-subgroups of
class groups for simplicity. Cohen and Martinet’s heuristics [40, Hypothesis 6.6]
give a conjecture on the distribution of Sylow p-subgroups class groups of G-
extensions that takes quite a bit of notation to write down. However, Wang and
the author [110, Theorems 1.1 and 4.1, Proposition 6.6] prove that it is equivalent
to conjecturing that for “reasonable” functions f from the set of finite p-group
R-modules to R that we have

f(A)
ZKESG,GOO f(ClK) ZAfin. P-8roup A Goo|[ Autg (A )]
(5.1.5) lim DX _ R-module
. = I .
X—o0 ZKGSG,GOO 1 2 Afin. P-8roup TAGoo || Autg (A )]
Dy<X R-module

Here ACx is the subgroup of elements of A that are fixed by every element of
Goo-

As before, the denominator of the right-hand side of (5.1.5) is a convergent
sum and can be given explicitly (see [110, Remark 3.4], [40, Theorem 3.6]).

Of course, these conjectures should specialize to the conjectures of Cohen and
Lenstra (2.3.1) and (2.3.2) for quadratic extensions.

Exercise 5.1.6. Check |AC~| is consistent with the |A|" terms in the quadratic conjec-
tures (2.3.1) and (2.3.2).

When G = S,, then R = Z[o]/(1+ o) = Z. So Aut(A) = Autg(A). This echoes
the fact, that we saw in Exercise 2.2.5, that the Galois group acts at —1 on the class
group in this case, which is not really any “additional structure” on an abelian

group.
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Exercise 5.1.7. Let G = Z/{Z for a prime {. What is R in this case? What are all the
p-group R-modules?

Exercise 5.1.8. Let G = Z/{Z for a prime L. Find a formula for | Autg (A)| when A is a
p-group R-module. [Hint: As in Exercise 3.1.9 it is useful denote the isomorphism type
of the R-module by a set of partitions indexed by the primes g of R dividing p, where if A
is the partition corresponding to p, then 9' 1A /p'A ~ (R/p) .]

There were some class group tables available for Cohen and Martinet to check
their conjectures against, but not nearly as many as in the case of quadratic fields.
Also, it is often difficult to distinguish between slow convergence to the conjec-
tured values and convergence that is contradicting the conjectures. Malle [81,82]
later was able to compute significantly more data on class groups, and was able
discover compelling evidence from his tables that for |G| odd and p = 2 the con-
jecture (5.1.5) is likely incorrect. These conjectures are expected to come from
roots of unity in the base field—in this case {1} C Q. (This expected relationship
to roots of unity comes also from further computations, including computations
of Malle over other base fields, theoretical considerations, as well as function field
results including [1,50]). The fact that {£1}] = 2 is why p = 2 is a problem, and
when |G| is even, p = 2 was already excluded for other reasons. Several works
have addressed the question of how to modify (5.1.5) when p = 2 and |G| is odd
or analogous situations over base fields other than Q [3,57,73,74].

As in the case of quadratic extensions, there are certain functions f whose
averages are particularly useful and more accessible. For a finite R-module B, the
average of #Surr(—, B) over a distribution is the B-moment of a distribution of
R-modules, or for a random R-module X, we say that

E(#Surgr(X,B))

is its B-moment. As in the case of conjectures for quadratic extensions, these
moments have nice values over the distribution from the right-hand side of (5.1.5).

Theorem 5.1.9 ([110, Theorem 6.2]). For any finite group G, prime p 1 |G|, subgroup
Goo of G, and p-group R-module B, we have

S A _#SurR(AB))
Afin. p-group TAGeo|| Autg (A)] 1
R-module
|BGeo]

. 1
ZAﬁn- P-group |AGeo || Autg (A)]
R-module

Exercise 5.1.10. For G = Z/{Z for a prime {, prove Theorem 5.1.9 using a strateqy
similar to what we used to prove (4.2.15).

Moreover, as in Theorem 4.1.7, these moments determine a unique distribution
on p-group R-modules, even through a limit [110, Theorem 6.12].

Project 5.1.11. Replicate and extend Malle’s empirical class group distribution compu-
tations for G = Z/3Z,7Z/52Z, andjor Z./7Z |81, Sections 2,3] and [82, Section 6.1],
i.e. over a large number of appropriate fields compute the class group distribution and
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first few moments (see the subsection below on different notions of moments). Can you
see the bad behavior at p = 2? At other p, do you see convergence towards the predicted
value? Can you make a conjecture about a rate of convergence, second term, or error
term? Can you implement a sampling technique to randomly sample fields up to a given
discriminant instead of considering all fields? What is the trade-off in computation time
and accuracy?

Project 5.1.12. The same as Project 5.1.11 except for G = Z/2Z x Z/2Z (and ignore
P = 2, but don’t forget to consider different Go).

Project 5.1.13. For G = Z/27Z x Z./2Z, and an odd prime p, use Exercise 5.2.2 to show
that for a G-Extension K, that Cly , is determined by the Sylow p-subgroups of the class
groups of the three quadratic subextensions (indeed, it is their product). Can this be used
to show that (5.1.5) for G = Z/2Z x Z./27Z follows from (2.3.1) and (2.3.2)? Or how
could you strengthen the latter so that it would?

For many G, the conjecture (5.1.5) is probably false even at odd p, for a different
reason. When asymptotically counting fields by discriminant, for many G, a
positive proportion of the fields contain some fixed subfield. (See [111,119] for
thorough discussion of when this happens for abelian G.) When this is the case,
the class group of that fixed subfield has an outsize contribution to the entire
class group average, which tends to violate the conjectures.

Exercise 5.1.14. Let K be a quadratic field in which every ramified prime is 1 mod 4.
Use the class field theory methods above to show that a positive proportion of Z./4Z-
extensions, asymptotically by discriminant, contain K.

Bartel and Lenstra [10] use this to show a concrete counterexample to (5.1.5)
for G = Z/4Z and f the characteristic function of having 3 divide the order
of the group. Based on work in [111] and [10, Proposition 6.6], they propose
replacing the absolute discriminant Dy in (5.1.5) with Py, the product of the
ramified primes in K.

Exercise 5.1.15. Find the asymptotics of G = Z/2Z and G = Z/37Z fields by Py
instead of Dy.

Exercise 5.1.16. When G = Z/4Z-extensions are counted asymptotically by Py, show
that there does not exist a quadratic field that is a subfield of a positive proportion of the
Z./AZ-extensions.

Project 5.1.17. Do computations as in Project 5.1.11 except for G = Z/4Z. Do some
tables by Dy and some by Px. Can you see the difference? Also try ordering fields by
P2Q, where P is the product of partially ramified primes and Q is the product of totally
ramified primes. (For this ordering, show the analog of Exercise 5.1.16.)

Different notions of moments
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Exercise 5.1.18. Malle [81, 82] computes the classical moments of the size of the p-
torsion of a random group X, ie. the average of |X[pl|X. How is this related to our
(Z/pZ) -moments for a random finite abelian group? [Hint: first consider the average
of Hom(—, (Z/pZ)*)]

A p-group R-module has an underlying abelian p-group. So when p-group
R-module moments (averages of #Surg(—, B)) determine a unique distribution of
p-group R-modules, they necessarily determine a unique distribution of abelian
p-groups. Then (without any limits), that must uniquely determine the abelian
p-group moments (averages of #Sur(—, B)). However, we can go more directly
from p-group R-module moments to p-group moments.

Exercise 5.1.19. If M is a p-group R-module, and B is a finite abelian p group, express
#Sur(M, B) in terms of #Surg(M, By) for various R-modules By that only depend on B.
Use this to relate the two kind of moments as suggested above.

Exercise 5.1.20. When G = Z/{Z, use the two exercises above and Theorem 5.1.9 to
find the predicted (from (5.1.5)) average of | Cl [p]|* over G-Extensions K.

5.2. Class groups of non-Galois extensions Now we consider G a finite transi-
tive permutation group that is not necessary simply transitive, with H C G the
stabilizer of an element. We will be considering G-Extensions, which are not
necessarily Galois. We can still define Sg g_, as above.

Exercise 5.2.1. Let K be a G-Extension, and L its Galois closure over Q. Let H C G be
the stabilizer of an element. Show Gal(L/K) ~ H, as groups.

Exercise 5.2.2. Let L/Q be a Galois extension with Galois group G. Let H be a subgroup
of G and X be the fixed field L". Show that the inclusion map

Clx — CIt

is an isomorphism on Sylow p-subgroups for any p 1 [H|. [Hint: consider to norm map
Cly — Clg as well. ]

Even though Cohen and Martinet do not make a general conjecture for non-
Galois extensions, for p 1 |G|, (5.1.5) implies a conjecture on the distribution of
Cly,p by pushing forward the distribution from (5.1.5) along taking H-invariants.
Said another way, one can consider functions f(A) that only depend on AH in
(5.1.5) and have a conjecture of the distribution of Clk ,, for G-Extensions, with
the minor caveat that (5.1.5) orders fields by the discriminant of the Galois closure
and not the discriminant of the G-Extensions. (We say this is minor not because
there is any clear way to go from one such average to the other, but rather because
it seems there is no strong a priori reason to prefer one ordering of the fields over
the other.) Explicit formulas for this pushforward are given in [110, Theorem
8.14], and they are indeed quite similar to (2.3.1), (2.3.2), (5.1.5). We will now
describe some aspects of those formulas.
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Absolutely irreducible permutation groups A finite permutation group G on
X naturally gives an [X|-dimensional representation of G over C, where G acts
on the basis vectors via its action on X. The associated representation always
contains one copy of the trivial representation (spanned by the sum of the basis
vectors), and let Vg be the quotient of this representation by that 1-dimensional
trivial representation. We say G is absolutely irreducible if Vg is. (The absolutely
emphasizes that we considered the representation over C and not Q).

For example, if G = Sy, in its usual degree n permutation representation, then
G is absolutely irreducible.

Let G be an absolutely irreducible finite permutation group, p a prime not
diving |G|, and G a subgroup of G. Let u+ 1 be the number of cycles in the
action of G on the underlying set. Then we have that Cohen and Martinet’s
conjecture (5.1.5) implies that for “reasonable” f on the set of finite abelian p-
groups, we have

f(Cl T(A)
ZKGDSF’G (Clk) ZAfin. ab. TATUTAut(A)]
(5.2.3) lim Kex = PP
2. = 1 .
X—00 ZKESG,GOO 1 2_ Afin. ab. ATETAut(A
[AT* ] Aut(A)]
Dgox p-group

This implication follows from [110, Theorem 8.14, Proposition 8.16]. (In this de-
duction, the absolute irreducibility implies k = 2 and ar,r/ = ¢2; so, (o, ar) =
dim ¢, = dim ar,rs and (2, ar/rr) = 1and (x, ¢2) = (Indr._ C, d2) = (C,Res[._ ¢2) =
(C,VG)reo =uwand hy =dimar,r.)

We have already seen in (4.2.15) the moments of the distributions above, and
we know from Theorem 4.1.7, that they determine a unique distribution.

The same caveats about avoiding p = 2 (because of the roots of unity in Q) and
counting by Pk instead of Dy apply to (5.2.3) as they did to (5.1.5).

Exercise 5.2.4. Show that for K € Sg g, that u (the number of cycles in the action of
Goo on the underlying set, minus 1) is the rank of the group of units of K.

Project 5.2.5. Do computations as in (5.1.11) for G = Ss, S4, and/or Ss in their standard
permutation representations, for p 1 |G|. Malle has done some computations for G = S3
in [81, Section 5] and [82, Section 5], and you will likely want to use Belabas’s CUBIC
program [12] for S3. For quartic and quintic fields, you could do some computations with
existing databases, or build on the suggested direction above to find new field enumeration
algorithms for S4 and Ss fields based on Bhargava’s parametrizations.

Beyond absolutely irreducible permutation groups A takeaway from the above
conjecture is that we conjecture when G is absolutely irreducible, then there is no
“additional structure” on the class groups of G-Extensions (at least for Sylow p-
subgroups for p 1 2|G|). However, other non-Galois G-extensions do have extra
structure on their class groups.

Consider the case when G = Dy in its transitive permutation representation
on the four vertices of a square. If K is a G-Extension, then Aut(K) = Z/2Z. Of
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course, Aut(K) acts on Clg, so even though K is not Galois, Clx has additional
structure.

However, also consider the following example from [110, Example 8.20]. Let
G = As in the transitive degree 10 action with H = ((123), (12)(45)) (as abstract
groups H ~ S3).

Exercise 5.2.6. For the G above, show that a G-extension K has no non-trivial automor-
phisms (e.g. by using Exercise 1.1.12).

Yet, if K is a G-Extension, for this G = As, and p a prime > 5, then Clg , is
naturally a module for a ring larger than Z. Indeed, this happens when G is not
absolutely irreducible [110, Lemma 8.4,Proposition 8.16].

Let H be a subgroup of a finite group G. Let e = ﬁ > hen h be an element of
the group algebra Q[G]. We can consider the Z-algebra eZ[Gle. (Note eZ[G]e is
additively and multiplicatively closed in Q[G] though we usually would not call
it a subalgebra because it does not have the same unit.)

Exercise 5.2.7. Show that
eZ[Gle ®7 Q ~ QH\G/H],
where Q[H\G/H] is the Hecke algebra of a finite group.

Exercise 5.2.8. Let A be a finite abelian G-module of order prime to |G|. Show that
eZI[Gle acts on the invariants AH making A into a module for eZ[Gle. [Hint:for
g € Gand a € A", let ege = egea, where the action all happens in A and the [H|~!
acts by an integer equivalent to it mod |Al.]

Exercise 5.2.9. Let L be a Galois field with Galois group G. Let K be the fixed field of
H. Let p be a prime not dividing |G|. Where N is defined as in Section 5.1, show that
eZ[Gle/NeZ|Gle acts on the Sylow p-subgroup of Clx.

See [110, Section 8] for a more complete explanation of this o := eZ[G]e/NeZ[Gle
action on Clk p, and in particular the proof that o is not Z when G is not abso-
lutely irreducible [110, Proposition 8.16], and the precise formula for the push-
forward of the conjectural Galois distribution on class groups from (5.1.5) along
A — AN, which can be given in terms of | Aut, (B)| [110, Theorem 8.14].

Project 5.2.10. Do computations for G = Dy in its transitive degree 4 permutation
representation, i.e. on quartic Dy fields, as in Project 5.1.11. Order fields by discriminant,
product of ramified primes, and also the Artin conductor of the 2-dimensional irreducible
representation of Dy (see [7] for asymptotic counting of D4-extensions by this invariant).
How do these different orders change the invariants? Note that a positive proportion of
Dgy-extensions, when counted by discriminant, include a given quadratic field (which we
can see from our asymptotic count above).

There is one further interesting feature in the non-Galois case, which is that
predictions can be made for some p | |G|. See [110, Section 7-8] for further discus-
sion of how this works, which is beyond the scope of these notes.
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Previous computations [41] suggested that conjectures on the 2-Sylow sub-
group of class groups of non-Galois cubic fields might be wrong, which may have
been because these computations were just seeing a large secondary or true error
term, or may have been an indication that the conjectures were wrong, which
might be coming from the roots of unity in Q. While Bhargava has proved one
average [16] on the 2-Sylow subgroup of class groups of cubic fields, it is still
quite open what the general distribution is.

Project 5.2.11. Do computations for G = S3 in its standard representation and p = 2,
as in Project 5.1.11. Do the same for G = A4 andfor Sy and p = 3. Do the values look
like they approach the values in (5.2.3) and moments as in (4.2.15) (which are the values
predicted by Cohen and Martinet, even for these particular cases where p | |G|)?

Project 5.2.12. Do computations for G = As and/or S5 in its standard representation
and p = 3, as in Project 5.1.11. Do the same for G = A4 andfor Sy and p = 3. In
these cases, the conjectures of Cohen and Martinet make no prediction. Can you guess a
pattern from the empirical values?

5.3. Generalizations and known results There are of course more generaliza-
tions of the questions of class group distribution. We do not attempt to give a
complete literature review, but give pointers to examples of recent work if vari-
ous directions. One can replace the base field Q with another number field Ky, or
even a global field such as a finite extension of IFq(t). For G = Z/pZ for a prime
p, Gerth [58,59] has extended the conjectures to include conjectures on the Sylow
p-subgroup.

Even within the scope of all these generalizations, there are few known class
group averages. Datskovsky and Wright [44] found the average of Sur(Cly, Z/3Z)
over quadratic extensions of a general global field of characteristic not 2 or 3. Bhar-
gava [16] found the average of Sur(Clg,Z/2Z) over imaginary, respectively real,
non-Galois cubic fields K. The work of Bhargava, Shankar, and Wang [23] address
the analog of this average over general global fields. For G any transitive permu-
tation 2-group containing a transposition, Lemke Oliver, Wang, and the author
[89] found the average of Sur(Clk,Z/3Z) over G-extensions K/Ky for any base
number field Kg. We also find the Z/3Z-moments of certain relative class groups
of these G-extensions. The method in [89] can be used to give these averages for
many other G of the form Z/2Z 1 H, see [89, Section 8]. When G = Z/4Z and f
is bounded and only depends on the class group of the quadratic subfield of the
cyclic quartic of a quartic G-extension K, Bartel and Lenstra [10] showed that the
average of f(Clkx) over G-extensions K is computable in finite time to arbitrary
precision. These are the known averages on the part of the class group of order
prime to the degree of the extensions being averaged over. However, Alex Smith
[98,99] has groundbreaking work that has proven the entirety of Gerth’s conjec-
ture on the distribution of 2 Clk » = Clk » / Clk [2] for quadratic fields, as well as
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Gerth’s analogous conjecture on Clk ;, over cyclic p-extension K, improving ear-
lier results [51,70]. When the base field is IF4(t) and one introduces an additional
limit ¢ — oo into the question, there are many results [1,2,50,76,115] and recently
these function field theorems have played a large role in guiding conjectures in
the area.

One can also ask about refinements of class groups, such as ray class groups
[34,47,105] or Arakelov class groups [10], or pointed groups that specify the
element in the class group corresponding to certain ideals [115]. One can restrict
the fields averaged over by imposing local conditions at finite primes [27,28,105,
115], or enlarge to consider class groups of non-maximal orders [27,28]. One
can also impose global conditions on the fields [20, 63,96, 97,100,112], such as
requiring their ring of integers be be generated by a single element (as an Z-
algebra). When one cannot obtain exact asymptotics for moments of class group
distributions, one may ask for upper bounds [8,49,54,60,88,91,102].

5.4. Unramified extensions Most of the above mentioned results access Clyk
through class field theory as Gal(K“™@?/K), the Galois group of the maximal
unramified, abelian extension of K. The averages are proven by counting unrami-
fied extensions. From this point of view, it is natural to ask more generally about
the distribution of the non-abelian (profinite) groups Gal(K"™/K), where K"*™ is
the maximal unramified extension of K. As in the abelian case, we have moments,
now indexed by finite groups G, and the Gth moment is the average of #Sur(—, G),
where Sur denotes continuous surjections. The Gth moment of Gal(K“™/K), as
K ranges uniformly over a family of number fields, is then | Aut(G)| times the
average number of unramified G-extensions of K (by Galois theory).

Liu, Zureick-Brown, and the author [76, Conjecture 1.3] have given conjectures
on the distribution of the part of Gal(K"™/K) prime to 2|I'| (as K ranges over to-
tally real '-extensions), and in particular on the Gth moment for any finite group
G of order relatively prime to 2|I'|. These conjectures generalize the conjecture of
Boston, Bush, and Hajir [31-33] on the maximal pro-p quotient of Gal(K"™/K)
(the p-class tower group) as K ranges over quadratic fields. The conjectures of
Boston, Bush, and Hajir were based on extensive computation and numerical ev-
idence in the number field case. The general conjectures of [76] are based on
theoretical reasoning about the presentation of Gal(K"™/K) and on q — oo the-
orems in the function field case. It would be very interesting the have more em-
pirical evidence in the number field case, in particular on whether the moments
are approaching their predicted values. See [76, Section 1.5] for a detailed dis-
cussion of the most interesting and accessible moments that would make useful
computational projects to explore experimentally. See also [116] for conjectures
on G-moments of Gal(K"™/K) as K ranges over quadratic fields and |G| has even
order. These conjectures are based on function field ¢ — oo theorems, but the
paper includes an appendix in which computations are done to give empirical
number field evidence. Boston and Bush [30] also have significant computations
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on the maximal pro-2 quotient of Gal(K"™/K) as K ranges over cyclic cubic fields,
which is beyond the scope of the conjectures of [76].
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